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Abstract: In this paper we prove the existence of positive solutions for a class of quasilinear elliptic equations

of the form:

—Apu(u):lh(x)|u|r+1 dx+g(x)|u|s+ldx, xeQ, u=0, xeodQ,

in WOLP (Q) where A is a real parameter, Q is a bounded domain with smooth boundary in RY, N > 3. and1<r <

p-1<s<(Np-N+p)/(N-P).
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INTRODUCTION

In this paper, we prove the existence of at least two
positive solutions of the following Dirichlet elliptic

problem: —A u (x) = /lh(x)|u|"+l dx + g(x)|u|SJrl dx inQ,
u=0 on o

(£2)

Where Q is a bounded domain in R~. In order to state our
main theorem, let us introduce the structure of problem
(E»).

Assume that N > 3 and 2 <
1<r<p—1<s<(Np—N+p)/(N—p)

p < N and
Let Q be a

bounded domain in RN having C* boundary 6Q.
Problem (E;) had been studied by Afrouzi and Khademloo
in [1] in the case when p = 2.
Regarding the functions h and g, we assume that
(H) h(x) > 0 for all x € Q and

he L (Q)NL*(Q)NC(Q)

1 that is o Np
’ 0 Np—(r+1)(N—p)'

Where 1 r+1
— 4 =

*
nh p

(G)g(x)<0aexe Qand gel (Q)HLOO(Q)

Where 1o s+l that is

*
S0 p

15

Np—(sivf))(fv—py{”* i NN—ppJ'

Next, we define X:WOLP(Q) as the closure of

S0 =

cr(Q) under the Norm 1

Jil = (], vl a7

We consider the energy functional J,(u) for each ueX

1 1
J, (u) = ;J‘Q|Vu|p dx —mjgg(xﬂur“ dx

A r
" IQh(x)|u| * dx.

It is well known that the solutions of Eq. (E,) are the
critical points of the energy functional J,(u).

Let S be the best Sobolev constant for the embedding
of Wol,p (Q) in ;p* (Q) . We prove that Eq. (E,) has at

least two positive solutions for A in a suitable range. Our
main result is:

Theorem 1.1: There exists A, > 0 such that for A € (0,4,),
Eq. (E,) has at least two positive solutions.
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Notations and Preliminaries: First, we consider the 0= <‘//31 (u),u> _ p"u"p s +1) IQg (x)|u|s+1 dr

Nehari minimization problem:
~A(r+1 j () ™ a

o =i e M) (p-r- lnun" (=)l

Where 7, e X\ {0}| (73 (u).u) =0} 2>0. Thus, ol - pS_ [ el e
Define and
v () = (4 (u)u) = ||“||p Af Pl =l = () o
J‘ |u|s+l dr— AJ‘ r+l dx. |u|s+1 dx = s+1-— ]i Qg(x)|u|s+1 dx.
p-r-
Then for u € M, Moreover
+1 s
| ) (%]nuup Sl - s
(v (w).) = pluy = (s +1) .
- y = (o)l ds <Al It 1
J.Qg X |u| dx—?t(r+l)_[gh |u| (@)
r+l1
Similarly to the method used in [2], we split M, into : ?L"h"m( r+l " " .
. P
three parts: This implies that §
M}[z{u eM1|<y/i(u),u>>O}, 1
B . p-r-1
Mﬂ, :{HEMZ,|<WZ.(H),M>:O}, "u"X < /l[ sl—r j"h"L,O :+1 ' (3)
+1- r+l
Mgz{ueMl|<l//A(u),u><O}. * P P
Let I, : M, - R be given by
Then, We Have the Following Results 1
Lemma 2.1: There exists A, > 0 such that for each " " s—p+2)  |s+l-p
A€ (0.4,), we have 410 I (u)=k(p.r.s) X—Hd
[ gColf ™ ax
Proof: We consider the following two cases: ( 1 J' ’ 14 )
case (I). u €M, and J‘ r+1 dx=0.
Where s—p+2 Then from
Then ( rs):(p—r—ljﬁlp s+1-p
ol | o™ =0 s ey Bl ey

1 2) it foll that
Thus we have (1) and (2) it follows tha

L (u)=0 4

<y/l u > p"u"p (s+1) for all ), ¢ 579 .

J' g x S“ p 5— 1 "u"P <0, However, by (3), the Holder and Sobolev inequalities we

Q drive
1
and so ueg Mg "u"p(sfp-#Z) s+l-p
case (II). u € M, and J‘ h(x)|u|r+1dx¢0. Suppose Il(u)Zk(p,i”,S) X—Hl
Q j g (x)[ul dx

thatMO +g forallA>0

Al bl
S P

For ,, eMO we have
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1

s+l-p
" ||p(s—p+2)
for , EM?’?(S?M) P E—
el SHHI
S P
A HlHW“
S P
P(_—P+12) > poril
s—p+
there exists a constant C > 0 such that
p(s—p+2)
ol < Cll 7
Therefore
1
s (o)
S _ 1
Dbl K S| M
il Y
1
r dstop ~(s+1)
S Mk (prs) S| calrile )

1
Ao 1
S P

=

o

R4

s—p+1

This implies that for A sufficiently small we have
I, (u)>0forall , Mg , which contradicts (4).

Thus, we can conclude that there exists A, > 0 such that
for 4 € (0, A ,) we have ,, eMg

By Lemma (2.1), for A € (0, A ) we shall
erteM/1 :MI UMZ

and define of — inf J, (u)> 0y = inf J; (u)-
ueMl ueM;y

The following Lemma shows that the minimizer on
M, (Q) are usually critical points of J,.

900

Lemma 2.2: ForeachA € (0,4 ,) ifu, is a local minimizer
for J;, on M; then J} (u)=0 in y-1,

Proof: If u, is a local minimizer for J, on M, then u, is a
solution of the optimization problem

Minimize J, (#)subject to P;(u) =0

Hence, by the theory of Lagrange multipliers, there exists
A € R such that

in

T (ug) = Awj (up) x '

<Jj1(u0),u0>:

But <‘//;1 (”0)’”0> #0, since up & M.

Thus A = 0 which completes the proof.

Thus

A<l//;1(u0),u0>:0. (5)

Lemma 2.3: If ,, ¢ 5/ then .[Qh(x)|u|r+l dx > 0.

Proof: We have

k- [,

and

r+l

|u|qul dx — /'LI dx=0,
s—r

ol > = e

Af HCo)f " e = = [ ()l e

S s+1-p
p-r-1Ja
Which completes the proof.
For each u € X\{0} we have

| |s+1

Thus

)c)|u|s+1 dx >0,

1
s+l-p

(p—r=1)]ul’,

()] a0l T

max —

then the following Lemma holds:

|

then for u € X\{0} and A € (0, A ,) we have

At

unique ;~, ¢ M3 and

r—

Lemma 2.4: Let p=r=l p(s-r)

\Js+1 P gs+l-p "h"yo

p—r—1
s—r

. r+1

If there  exists

dx <0,

Ja (t_u) = :?p Jl(tu).

max
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. If /'LJ'

0<tt =t (u)<tmax

+1
r dx >0, there exists a unique

, such that ,+, eMj{ and

Jy (t+u) = inf Jl(tu).

0<r<t”

Proof: Fix u € X\{0}, let

s(t) =Pl "u"f( —ts_r.[Qg( )| |SJrl dx Vt=0.

Then s(0) =0, s(t) - - = as s(t) is concave and achieves its
maximum at f,,,, Moreover

pr-l
1-
s(t ): (p—r—l)"u”f{ s+ P"u"p
max (s—r)J.Qg(X)|u|S+ldx X
or p-r-1
1 P s+1-p
_ (p r )"u"f+1 J' g(x)|u|s+1dx
(5[ e(olTax| o
p-r-1
|| ey
S ’")J. | |s+1 e
Q
s—r |
(s+l)(p—r—l) s+l-p
3 (p—r—l)"u"X o
s+1 L’I
(=) [ gl as] -
p-r-1 ;—r
r+l1 p—r—1 1 )s+1- I p—r—1\s+l-p
=y —
S—r
p-r-1
[yt "
|:J'Q |u|b+1
p-r-1
1 s+l \s41-p
>|| "rH[p r— 1Jf+lrp|:l (p—r—lj:| S P
s=r ) lel

901

s(tmax) 2
p-r-1
1 L’H S+1—p
" ||r+l[p r— ljfﬂr P |:(S+1—pj:| S 7
s=r )] el
(6)
So

If_[ h(x)|u|r+1dx<0 there exists a unique ;- - ;
Q - b
such that -\ r+l and o[-
()= [ a2 (i) <o
Now,

s+1

dx

(p—r—l) tfui;—(s—r) tu

- (f)”z |:(p r=1)(e

g(x)
|l

p-r—

Jo
)

- (s —r)(f)sjril IQg(x
(t‘)Hz s’(t‘) <0,

|

and

()} )IMI’” ( ) Lot
e e e A ]

Thus ;~, ¢ M3, On the other hand for t > tmax we have

s+l

r+1

0.

s+1

dx <0,

(p=r=ulf, ~(s=r)]_&(x)

o

2
dle(lu) <0,

d
—J
i 2 (tu

J=elulfy [

x)|u|s+1 dx — tr/lJ'Qh ()c)|u|r+1 dx,

thus, Jl(t_u): sup Jl(tu).

2,
« If J' r+1 dx >0, by (6) we have
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s(O) =0< /IJ.Qh(x)|u|"+l dx

1
A
-r-1

S

)
<5(tmax ) Sor Ae(0,4y)

So there exist unique ¢ and f'such that 0 <¢

p-r-1

51 \s+l-p

R4

le

r+l1
X

p—-r—1 s+1-p

<[

S—=r S—=r

o

0<t" <ty <t
s(l+)=/ljgh(x)|u|r+ldx=s(t7),

S(F)>0>5'( ).

(17)>0>(r)

Thus +, eM;, tueMjy,

and

J;L(t_u)ZJ;L(tu)ZJ;L(tJ'u) for each te[f“,f} and

Jl(fru)s./l(tu) for each te[o,f“] Thus

J), (fu) = sup J) (tu),
t=t
()

This completes the proof.

Iy = inf J, (i),
Let 9:{x€Q|h(x)>0}. We know that 0 is a open set in

0<r<t”

R", because that # € C°(Q) Consider the following elliptic
equation

—A u = g(x)|u|s_lu, inb,
0<u, in@,
u=0, onoo,
(Ee)
1 p 1 s+1
k(u):;j9|Vu| dx—s+1j0g(x)|u| dx,

and the Nehari minimization problem

B(6)=inf {k(u)ue N},

902

where p — {u e X(Q)\{O}| <k'(u),u> =0} and

X(O) - Wol’p (9) Then we have the following results.

Lemma 2.5: Equation (Ey)has a positive solution w, uch
that k(w,) = (0) > 0

Proof: First, we need to show that & is bounded below on
Nand B>0Foru eN

Vul? dx = g(x qudx
[ vl ax=],

s+1

1 2
150 E(J‘e|vu|p dx) p .

NR4

<|e

This implies
JJ

S+ \s+1-p

(7

j |Vu|p dx> Al
0 e

L0

Hence forallu e N

k(u):%je|Vu|pdx— ! jeg(x)|u|s+ldx

s+1
P
s+l \s4i-p
1 1 P
2[___]3_ 0.
p s+1 "g]j0

This implies > 0 Let (w,} be a minimizing sequence
for k£ on N, then by (7) and the compact embedding
theorem, without loss of generality we may assume that
there exist w, in X(0) such that w, —2 5w, weakly in

(®)
L > 0. Otherwise by (8)

X(0) and w, > strongly in L*"'

We claim that J‘eg(x)|W0|s+

we can conclude that

J‘eg()c)|wn|s+1 dx —>0 as

Thus "Wn"f((e) ~0(1) and

1 1 s
k(wn) :;JQ|VWn|p dx —mjeg(xﬂwnr“ dx —0

as n-—e
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This contradicts k(w,) = B > 0

as n-c Thus, ;u”l o 1 1), »
J‘eg(x)|wo|S+1 de>0. In particular, w, # 0 Now, we shall Tl | 0| p o+l A "WO"X
prove that w,~ w, strongly in X (0) therwise we have

1 1 s+l
+L+1—m}i“fgg<x>mr i
—r-l
[ [vo|” e <timint [ [V, | dx <-Fifp(e)<o.
n—>0
and hence

This yields

J9|Vw0|p dx — J‘Gg(x)|w0|s+1 dx

-r-1
o, <o <-L

For u € M, we have
<liminf(J. |an|p dx—J. |w |s+1 ):O »
o o e[ f.[ ()]uf dx+1f
By J‘ |w |S+1 dx, there exist a unique ¢, # 1such

that £,w, € N Thus o — > 0w, weakly in X() and so Then using the Holder an Young inequalities
n

J s+l P
k(tgwo ) <k (wp) < lim k(w,)= B, 1 (u
n—>0

4
e

Which is a contradiction. Hence w,~ w, strongly in

. i i —A[L]J h(x)|u|r+1 dx
X(0). This implies w, € N and (r * 1)(S + 1) Q
T L1
k(w,~ k(w))=p as n- = s+1
r+l
We may assume that w, is a positive solution of Eq. (Ey) —){ ( J" " ) || "
r+1 s+1
Lemma 2.6:
e There exists ¢, > 0 such that
SIS ﬂn I
p(s + 1) s +1
+ p-r-1 2
oy <oy <- - 538(6)<0 »
—r—1
(s=r)(p o
* J, is coercive and bounded bellow on M, for all -1 m " " I i
e (0 SH_—P}
Tos-r |

S P

e ICRRRVA R Ll

Proof:

Let w, be a positive solution of Eq. (£;) such that

k(w,) = B (0)Then

p-r-1
| =r)lp=r-1) 1], .
(s+1 r+1 L il
JQh(x)wS“dx = Jeh(x)w(r)“dx > 0.

S P

Thus, J, is coercive on M, and
Set ¢, =" (w,) as defined by Lemma (2.4)

Hence , W € M,{ and

r+1 tfﬁ(9)<

0.

r+1

p-r-1
s—r)p-r 1
’l(”)z‘l(((slﬁJ s 7
S P

Ja(tawo) = l|| 0")( A g ()|l for all Ae(o,”l—_p}.
S—r

s+1

903

dx.
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Proof of Theorem 1.1.

Theorem 3.1: Let -
P =min{/ll,/12,s+l—p

for each A
—-r

€(0, 4,)
There exists a minimizing sequence {u,} < M, such that

Tp(ug)=ay +0(1) . Ji(w,)=0(1) in  x-!

There exists a minimizing sequence {”n} cM; such that

Jy(up) =07 +0(1) , Jy(u,)=0(1) 0 x7!

Proof: The proof is almost the same as that in [3,
Proposition 9] and we omit that.
Now we establish the existence of a local minimum for
n +
J;._ on ar 1

Theorem 3.2: Let A, > 0 as in Proposition 3.1, then for A
€ (0, A,) the functional J, has a minimizer u& in MI and

it satisfies

(I) J/l(ua—):al:ajl—
(ii) ug is a positive solution of Eq. (E;)

(iii) 7, (”(J)r) 0 a 4-0
Proof: Let {u,} be a minimizing sequence J, on M, such that

Ja )= +0(1). 73 () =0(1)in

then by Lemma (2.6) and the compact imbedding theorem,
there exist a subsequence {u,} and ,+ o xy such that
0

U, —>ug weakly in X
u, = u strongly in L*"'

w, = ui strongly in L*"'(Q)

7

If not, by (9) we

+ +1
ug| dx#0.

hx)

First, we claim that _[ (

conclude that

Iz

+1
uf|  de=0

J ()

and

904

.[Qh()c)|un|rJrl dx — 0 as n 800> ua’

Thus

IQ|Vu|p dx = ng(x)|u|S+1 dx + 0(1),

and

1 1
J/l(”n):;J.QW”nV olx——1 Qg(x)|un|s+1 dx

A J'Qh(x)|un|r+l dx
! jjﬂg(x)|un|s+l dx + 0(1)
jfgg(x)

this contradicts J(u,) = &, <0 asn — == In particular,

s+1
dx asn— o,

+
U

ug € My
is a nonzero solution of Eq. (E,)
and Jy (”a) > 0. We now prove that u, = ug strongly

in X. Supposing the contrary, then |, +

ugl| < h,I,ri)lgf ||u,,||X
and so
p s+1 r+l
ug X—.[Qg(x) ug dx—ljﬂh(x) ug| dx

< 1iggf(||un||f( - IQg(x)|un P ax

_AJ‘Qh(x)|un|r+1 dx) =0,

this contradicts with ug €M, - Hence strongly in X.
This implies
Jl(un)%Jl(ug)za/l as n— .
Moreover, we have uy € M7, - In fact, if uy € M7,
by Lemma (2.4) there exists unique ta and fo such that
fgug € M3 and toug € M3 > We have 1<ty =1. Since0

Ky (t+u+)—0andd—2J (t+u+)>0
a0 A\l a2 AlloHUo >
there exists [(J)r < <1 such that
J,l(tgua“)<.ll(t_ua’).

By Lemma (2.4) we conclude that
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J; (zgug) <J, (z‘ug) <J, (zgug) =J; (ug)

Which is a contradiction. Since JA(”&)_JA(‘UJ‘)

c M+ ( Q)’ and using Lemma (2.2) we may assume

that ug is nonnegative solution. By [4, Lemma(2.1)] we
have & ¢ = (). Then we can apply the Harnack
inequality [5] in order to get that

ug 18 positive in Q

Moreover, by Lemma (2.6), Jy ( ) <0 and

)=

We obtain J( )_>0 asA-0

p-r-1
(S‘)— 7]

(s r+1 Lo i

s P

Jl(ug »

Next, we establish the existence of a local minimum for J,
on Ary.

Theorem 3.3: Let A, > 0 as in Proposition 3.1, then for
A € (0,A) the functional J; has a minimizer u, in M3 nd it

satisfies

D, (wg) =0z

(ii) uy is a positive solution of Eq.(E)).

Proof: By Proposition 3.1 (ii), there exists a minimizing
sequence {u,} forJ, on M3 such that

Iy (ug) =z +0(1) and Jj (u,)=0(1) in y-1.

By Lemma (2.1) and the compact imbedding theorem,
there exist a subsequence {u,} and ;= M; such that
U, —> Uy weakly in X
U, —> uy strongly in L*"'

U, = uy strongly in L™'(Q)

We now prove that ,, _ uy strongly in X.
n

905

Suppose otherwise, then “u_“ <11m1nf||u " and so
0 X n—ow
1 1
g f{ —IQg(x) ug : dx—).J-Qh(x) ug " dx
< hrl,ri)inf("u”"i - IQg x)|un |SJrl dx
A () ax] =0

This contradicts with uy € M3 - Hence 4

strongly in X.
This implies

J/l(un)—)J/l(Ua)=05;f as n —» oo,

Since J),(”O_):J),(‘”a‘) and

(2.2) we may assume that

uy| e M3 (Q) by Lemma

U 1S a nonnegative

solution, uy >0 in Q and uy #0.

Now, we complete the proof of Theorem (1.1). By
Theorems (3.2), (3.3), for Eq.(E,) there exist two positive

+ and uy such that

solutions ,,
0

“5 eM;:,u(; eM;.
Since MINM; =@. This implies that ug and u  are

different.
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