The Nehari Manifold for a Class of Elliptic Equations of P-laplacian Type

¹S. Khademloo and ²H. Mohammadnia. afrouzi

¹Department of Basic Sciences, Babol University of Technology, Babol, Iran ²Young Researchers Club, Islamic Azad University, Ghaemshahr Branch, P.D. Box 163, Ghaemshahr, Iran

Abstract: In this paper we prove the existence of positive solutions for a class of quasilinear elliptic equations of the form:

$$-\Delta_p u(u) = \lambda h(x) |u|^{r+1} dx + g(x) |u|^{s+1} dx, \quad x \in \Omega, \quad u = 0, \quad x \in \partial \Omega,$$

in $W_0^{1,p}(\Omega)$ where λ is a real parameter, Ω is a bounded domain with smooth boundary in \mathbb{R}^N , $N \ge 3$. and $1 \le r \le p-1 \le s \le (Np-N+p)/(N-P)$.

Key words: Nehari manifold • Minimizing sequence • Critical Sobolev exponent

INTRODUCTION

In this paper, we prove the existence of at least two positive solutions of the following Dirichlet elliptic problem: $\begin{cases} -\Delta_p u(x) = \lambda h(x) |u|^{r+1} dx + g(x) |u|^{s+1} dx & in \Omega, \\ u = 0 & on \partial \Omega. \end{cases}$ (E_{λ})

Where Ω is a bounded domain in \mathbb{R}^N . In order to state our main theorem, let us introduce the structure of problem (E_{λ}) .

Assume that N \geq 3 and 2 \leq p < N and. 1 < r < p-1 < s < (Np-N+p)/(N-p) Let Ω be a

bounded domain in $\mathbb{R}^{\mathbb{N}}$ having \mathbb{C}^2 boundary $\delta\Omega$.

Problem (E_{λ}) had been studied by Afrouzi and Khademloo in [1] in the case when p = 2.

Regarding the functions h and g, we assume that (H) $h(\times) \ge 0$ for all $x \in \Omega$ and

$$h \in L^{r_0}(\Omega) \cap L^{\infty}(\Omega) \cap C^0(\Omega)$$

Where
$$\frac{1}{r_0} + \frac{r+1}{p^*} = 1$$
, that is $r_0 = \frac{Np}{Np - (r+1)(N-p)}$.

(G)
$$g(x) < 0$$
 a.e $x \in \Omega$ and $g \in L^{s_0}(\Omega) \cap L^{\infty}(\Omega)$

Where
$$\frac{1}{s_0} + \frac{s+1}{p^*} = 1$$
, that is
$$s_0 = \frac{Np}{Np - (s+1)(N-p)}, \left(p^* = \frac{Np}{N-p}\right).$$

Next, we define $X = W_0^{1,p}(\Omega)$ as the closure of $C_0^{\infty}(\Omega)$ under the Norm

$$||u||_X = \left(\int_{\Omega} |\nabla u|^p \, dx\right)^{\frac{1}{p}}.$$

We consider the energy functional $J_{\lambda}(\mu)$ for each $u \in X$

$$J_{\lambda}(u) = \frac{1}{p} \int_{\Omega} |\nabla u|^{p} dx - \frac{1}{s+1} \int_{\Omega} g(x) |u|^{s+1} dx$$
$$-\frac{\lambda}{r+1} \int_{\Omega} h(x) |u|^{r+1} dx.$$

It is well known that the solutions of Eq. (E_{λ}) are the critical points of the energy functional $J_{\lambda}(\mu)$.

Let S be the best Sobolev constant for the embedding of $W_0^{1,p}(\Omega)$ in $L^{p^*}(\Omega)$. We prove that Eq. (E_{λ}) has at

least two positive solutions for λ in a suitable range. Our main result is:

Theorem 1.1: There exists $\lambda_0 > 0$ such that for $\lambda \in (0, \lambda_0)$, Eq. (E_{λ}) has at least two positive solutions.

Notations and Preliminaries: First, we consider the Nehari minimization problem:

$$\alpha_{\lambda} = \inf \{ J_{\lambda}(u) | u \in M_{\lambda} \},$$

Where
$$M_{\lambda} = \{u \in X \setminus \{0\} | \langle J_{\lambda}(u), u \rangle = 0\}, \quad \lambda > 0.$$

Define

$$\psi_{\lambda}(u) = \langle J_{\lambda}'(u), u \rangle = ||u||_{X}^{p} - \int_{\Omega} g(x)|u|^{s+1} dx - \lambda \int_{\Omega} h(x)|u|^{r+1} dx.$$

Then for $u \in M_{\lambda}$

$$\langle \psi_{\lambda}'(u), u \rangle = p \|u\|_X^p - (s+1)$$
$$\int_{\Omega} g(x) |u|^{s+1} dx - \lambda (r+1) \int_{\Omega} h(x) |u|^{r+1} dx.$$

Similarly to the method used in [2], we split M_{λ} into three parts:

$$\begin{split} M_{\lambda}^{+} &= \left\{ u \in M_{\lambda} \middle| \left\langle \psi_{\lambda}'(u), u \right\rangle > 0 \right\}, \\ M_{\lambda}^{-} &= \left\{ u \in M_{\lambda} \middle| \left\langle \psi_{\lambda}'(u), u \right\rangle = 0 \right\}, \\ M_{\lambda}^{0} &= \left\{ u \in M_{\lambda} \middle| \left\langle \psi_{\lambda}'(u), u \right\rangle < 0 \right\}. \end{split}$$

Then, We Have the Following Results

Lemma 2.1: There exists $\lambda_1 > 0$ such that for each $\lambda \in (0, \lambda_1)$, we have $M_{\lambda}^0 = 0$.

Proof: We consider the following two cases: case (I). $u \in M_{\lambda}$ and $\int_{\Omega} h(x)|u|^{r+1} dx = 0$.

Then

$$||u||_X^p - \int_{\Omega} g(x)|u|^{s+1} dx = 0.$$

Thus we have

$$\langle \psi_{\lambda}(u), u \rangle = p \|u\|_{X}^{p} - (s+1)$$

$$\int_{\Omega} g(x)|u|^{s+1} dx = (p-s-1) \|u\|_{X}^{p} < 0,$$

and so $u \notin M^0_{\lambda}$

case (II). $u \in M_{\lambda}$ and $\int_{\Omega} h(x)|u|^{r+1} dx \neq 0$. Suppose

that $M_{\lambda}^{0} \neq \emptyset$ for all $\lambda > 0$

For $u \in M_{\lambda}^{0}$, we have

$$0 = \langle \psi_{\lambda}'(u), u \rangle = p \|u\|_{X}^{p} - (s+1) \int_{\Omega} g(x) |u|^{s+1} dx$$
$$-\lambda (r+1) \int_{\Omega} h(x) |u|^{r+1} dx$$
$$= (p-r-1) \|u\|_{X}^{p} - (s-r) \int_{\Omega} g(x) |u|^{s+1} dx.$$

Thus, $||u||_X^p = \frac{s-r}{p-r-1} \int_{\Omega} g(x) |u|^{s+1} dx,$ (1)

and

$$\lambda \int_{\Omega} h(x) |u|^{r+1} dx = ||u||_{X}^{p} - \int_{\Omega} g(x)$$

$$|u|^{s+1} dx = \frac{s+1-p}{p-r-1} \int_{\Omega} g(x) |u|^{s+1} dx.$$
(2)

Moreover

$$\left(\frac{s+1-p}{s-r}\right) \|u\|_{X}^{p} = \|u\|_{X}^{p} - \int_{\Omega} g(x) |u|^{s+1} dx$$

$$= \lambda \int_{\Omega} h(x) |u|^{r+1} dx \le \lambda \|h\|_{L^{r_0}} \|u\|_{L^{p^*}(\Omega)}^{r+1}$$

$$\le \lambda \|h\|_{L^{r_0}(\Omega)} \frac{1}{s-r} \|u\|_{X}^{r+1}.$$

This implies that

$$\|u\|_{X} \le \left[\lambda \left(\frac{s-r}{s+1-p}\right) \|h\|_{L^{0}} \frac{1}{\frac{r+1}{S^{p}}}\right]^{\frac{1}{p-r-1}}.$$
 (3)

Let $I_{\lambda}: M_{\lambda} \to R$ be given by

$$I_{\lambda}(u) = k(p,r,s) \left[\frac{\|u\|_{X}^{p(s-p+2)}}{\int_{\Omega} g(x)|u|^{s+1} dx} \right]^{\frac{1}{s+1-p}}$$
$$-\left(\lambda \int_{\Omega} h(x)|u|^{r+1} dx\right),$$

Where $k(p,r,s) = \left(\frac{p-r-1}{s-r}\right)^{\frac{s-p+2}{s+1-p}} \left(\frac{s+1-p}{p-r-1}\right).$ Then from

(1) and (2) it follows that

$$I_{\lambda}\left(u\right)=0\tag{4}$$

for all $u \in M_{\lambda}^0$.

However, by (3), the Holder and Sobolev inequalities we drive

$$I_{\lambda}(u) \ge k(p,r,s) \left[\frac{\|u\|_{X}^{p(s-p+2)}}{\int_{\Omega} g(x)|u|^{s+1} dx} \right]^{\frac{1}{s+1-p}}$$
$$-\lambda \|h\|_{L^{r_0}} \frac{1}{\frac{r+1}{p}} \|u\|_{X}^{r+1}$$

$$\begin{split} \text{for } u \in M_{\hat{\lambda}}^{\text{in}} \, k(\text{Sincs}) & \left[\frac{\|u\|_{X}^{p(s-p+2)}}{\|g\|_{L^{s_0}} \frac{1}{\frac{s+1}{p}} \|u\|_{X}^{s+1}} \right]^{\frac{1}{s+1-p}} \\ & -\lambda \|h\|_{L^{s_0}} \, \frac{1}{\frac{r+1}{p}} \|u\|_{X}^{r+1}, \end{split}$$

$$\frac{p(s-p+2)}{s-p+1} > p > r+1$$

there exists a constant C > 0 such that

$$\|u\|_X^{r+1} \le C\|u\|_X^{\frac{p(s-p+2)}{s+1-p}}$$

Therefore

$$I_{\lambda}(u) \ge \|u\|_{X}^{r+1} \left[k(p,r,s) \left[\frac{\frac{r+1}{S}}{\|g\|_{L^{90}}} \right]^{\frac{1}{s+1-p}} C \|u\|_{X}^{\frac{-(s+1)}{s-p+1}} - \lambda \|h\|_{L^{0}} \frac{1}{\frac{r+1}{S}} \right]$$

$$\geq \|u\|_{X}^{r+1} \left\{ k(p,r,s) \left[\frac{\frac{r+1}{S^{\frac{r}{p}}}}{\|g\|_{L^{0}}} \right]^{\frac{1}{s+1-p}} C \lambda^{\frac{-(s+1)}{(s-p+1)(p-r-1)}} \right.$$

$$\left[\left(\frac{s-r}{s-p+1} \right) \|h\|_{L^0} \frac{1}{\frac{r+1}{S^{-p}}} \right]^{\frac{-(s-1)}{(s-p+1)(p-r-1)}} - \lambda \|h\|_{L^0} \frac{1}{\frac{r+1}{S^{-p}}} \right\}.$$

This implies that for λ sufficiently small we have $I_{\lambda}(u) > 0$ for all $u \in M_{\lambda}^{0}$, which contradicts (4).

Thus, we can conclude that there exists $\lambda_1 > 0$ such that for $\lambda \in (0, \lambda_1)$ we have $u \in M^0_{\lambda}$

By Lemma (2.1), for $\lambda \in (0, \lambda_1)$ we shall write $M_{\lambda} = M_{\lambda}^+ \cup M_{\lambda}^-$

and define
$$\alpha_{\lambda}^{+} = \inf_{u \in M_{\lambda}^{+}} J_{\lambda}(u) \cdot \alpha_{\lambda}^{-} = \inf_{u \in M_{\lambda}^{-}} J_{\lambda}(u) \cdot$$

The following Lemma shows that the minimizer on $M_{\lambda}(\Omega)$ are usually critical points of J_{λ} .

Lemma 2.2: For each $\lambda \in (0, \lambda_1)$ if u_0 is a local minimizer for J_{λ} on M_{λ} then $J'_{\lambda}(u) = 0$ in χ^{-1} .

Proof: If u_0 is a local minimizer for J_{λ} on M_{λ} then u_0 is a solution of the optimization problem

Minimize $J_{\lambda}(u)$ subject to $\Psi_{\lambda}(u) = 0$

Hence, by the theory of Lagrange multipliers, there exists $A \in R$ such that

Thus $J'_{\lambda}(u_0) = \Lambda \psi'_{\lambda}(u_0) \quad \text{in} \quad \chi^{-1}.$ $\langle J'_{\lambda}(u_0), u_0 \rangle = \Lambda \langle \psi'_{\lambda}(u_0), u_0 \rangle = 0. \tag{5}$

But $\langle \psi'_{\lambda}(u_0), u_0 \rangle \neq 0$, since $u_0 \notin M^0_{\lambda}$.

Thus A = 0 which completes the proof

Lemma 2.3: If $u \in M_{\lambda}^+$, then $\int_{\Omega} h(x) |u|^{r+1} dx > 0$.

Proof: We have

$$||u||_X^p - \int_{\Omega} g(x)|u|^{s+1} dx - \lambda \int_{\Omega} h(x)|u|^{r+1} dx = 0,$$

and

$$||u||_X^p > \frac{s-r}{n-r-1} \int_{\Omega} g(x) |u|^{s+1} dx.$$

Thus

$$\lambda \int_{\Omega} h(x) |u|^{r+1} dx = ||u||_{X}^{p} - \int_{\Omega} g(x) |u|^{s+1} dx$$
$$> \frac{s+1-p}{p-r-1} \int_{\Omega} g(x) |u|^{s+1} dx > 0,$$

Which completes the proof.

For each $u \in X \setminus \{0\}$ we have

$$t_{\max} = \left[\frac{(p-r-1)||u||_{X}^{p}}{(s-r)\int_{\Omega} g(x)|u|^{s+1} dx} \right]^{\frac{1}{s+1-p}} > 0,$$

then the following Lemma holds:

Lemma 2.4: Let $\lambda_2 = \left(\frac{p-r-1}{s-r}\right)^{\frac{p-r-1}{s+1-p}} S^{\frac{p(s-r)}{s+1-p}} \|h\|_{L^0}^{-1}.$

then for $u \in X \setminus \{0\}$ and $\lambda \in (0, \lambda_1)$ we have

• If $\lambda \int_{\Omega} h(x) |u|^{r+1} dx \le 0$, there exists a unique $t^- u \in M_{\lambda}^-$ and $J_{\lambda}(t^- u) = \sup_{t > t_{max}} J_{\lambda}(tu)$.

• If $\lambda \int_{\Omega} h(x) |u|^{r+1} dx > 0$, there exists a unique $0 < t^+ = t^+(u) < t_{\text{max}}$, such that $t^+u \in M_{\lambda}^+$ and

$$J_{\lambda}\left(t^{+}u\right) = \inf_{0 \le t \le t^{-}} J_{\lambda}\left(tu\right).$$

Proof: Fix $u \in X \setminus \{0\}$, let

$$s(t) = t^{p-r-1} ||u||_X^p - t^{s-r} \int_{\Omega} g(x) |u|^{s+1} dx \quad \forall t \ge 0.$$

Then s(0) = 0, $s(t) \rightarrow -\infty$ as s(t) is concave and achieves its maximum at t_{max} Moreover

$$s(t_{\max}) = \left(\frac{(p-r-1)\|u\|_{X}^{p}}{(s-r)\int_{\Omega}g(x)|u|^{s+1}dx}\right)^{\frac{p-r-1}{s+1-p}}\|u\|_{X}^{p} \\ = \left(\tau^{-r+2}\right[(p-r-1)(\tau^{-r+2})^{\frac{p-r-1}{s+1-p}}] \\ = \left(\tau^{-r+2}\right[(p-r-1)(\tau^{-r+2})^{\frac{p-r-1}{s+1-p}}] \\ = \left(\tau^{-r+2}\right[(p-r-1)(\tau^{-r+2})^{\frac{p-r-1}{s+1-p}}] \\ = \left(\tau^{-r+2}\right]^{\frac{p-r-1}{s+1-p}} \\ = \left(\tau^{-r+2}\right)^{\frac{p-r-1}{s+1-p}} \\ = \left(\tau$$

$$s(t_{\text{max}}) \ge$$

$$\|u\|_{X}^{r+1} \left(\frac{p-r-1}{s-r}\right)^{\frac{p-r-1}{s+1-p}} \left[\left(\frac{s+1-p}{s-r}\right) \right] \left(\frac{\frac{s+1}{p}}{\|g\|_{L^{s_0}}}\right)^{\frac{p-r-1}{s+1-p}}$$
(6)

So

If $\int_{\Omega} h(x)|u|^{r+1} dx \le 0$, there exists a unique $t^- > t_{\text{max}}$ such that $s(t^-) = \int_{\Omega} h(x)|u|^{r+1} dx$ and $s'(t^-) < 0$. Now,

$$(p-r-1) \|t^{-}u\|_{X}^{p} - (s-r) \int_{\Omega} g(x) |t^{-}u|^{s+1} dx$$

$$= (t^{-})^{r+2} \left[(p-r-1) (t^{-})^{p-r-2} \|u\|_{X}^{p} \right]$$

$$-(s-r)(t^{-})^{s-r-1} \int_{\Omega} g(x)|u|^{s+1} dx$$

= $(t^{-})^{r+2} s'(t^{-}) < 0$,

and

$$\begin{split} &\left\langle J_{\lambda}^{\prime}\left(t^{-}u\right),t^{-}u\right\rangle = \left(t^{-}\right)^{p}\left\|u\right\|_{X}^{p} - \left(t^{-}\right)^{s+1}\int_{\Omega}g(x)\left|u\right|^{s+1}dx \\ &- \left(t^{-}\right)^{r+1}\lambda\int_{\Omega}h(x)\left|u\right|^{r+1}dx = \left(t^{-}\right)^{r+1}\left\lceil s\left(t^{-}\right) - \lambda\int_{\Omega}h(x)\left|u\right|^{r+1}dx \right\rceil = 0. \end{split}$$

Thus $t^-u \in M_{\lambda}^-$. On the other hand for $t > t \max$ we have

$$(p-r-1)||tu||_X^p - (s-r)\int_{\Omega} g(x)|tu|^{s+1} dx < 0,$$

$$\frac{d^2}{dt^2}J_{\lambda}(tu)<0,$$

$$\frac{d}{dt}J_{\lambda}(tu) = t \|u\|_{X}^{p} - t^{s} \int_{\Omega} g(x)|u|^{s+1} dx - t^{r} \lambda \int_{\Omega} h(x)|u|^{r+1} dx,$$

thus,
$$J_{\lambda}(t^{-}u) = \sup_{t > t} J_{\lambda}(tu)$$
.

• If
$$\int_{\Omega} h(x)|u|^{r+1} dx > 0$$
, by (6) we have

World Appl. Sci. J., 11 (8): 898-905, 2010

$$s(0) = 0 < \lambda \int_{\Omega} h(x) |u|^{r+1} dx$$

$$\leq \lambda ||h||_{L^{0}} \frac{1}{S^{\frac{r+1}{p}}} ||u||_{X}^{r+1}$$

$$< \|u\|_{X}^{r+1} \left(\frac{p-r-1}{s-r}\right)^{\frac{p-r-1}{s+1-p}} \left[\left(\frac{s+1-p}{s-r}\right) \right] \left(\frac{\frac{s-1}{p}}{\|g\|_{L^{s_0}}}\right)^{\frac{p-r-1}{s+1-p}}$$

$$\leq s(t_{\max}) \quad for \quad \lambda \in (0, \lambda_2)$$

So there exist unique t^+ and t such that $0 < t^+$

$$0 < t^+ < t_{\text{max}} < t^-$$

and

$$s(t^{+}) = \lambda \int_{\Omega} h(x) |u|^{r+1} dx = s(t^{-}),$$

$$s'(t^{+}) > 0 > s'(t^{-}).$$

Thus $t^+u \in M_{\lambda}^+$, $t^-u \in M_{\lambda}^-$,

$$J_{\lambda}(t^{-}u) \ge J_{\lambda}(tu) \ge J_{\lambda}(t^{+}u)$$
 for each $t \in [t^{+}, t^{-}]$ and $J_{\lambda}(t^{+}u) \le J_{\lambda}(tu)$ for each $t \in [0, t^{+}]$. Thus

$$J_{\lambda}(t^{-}u) = \sup_{t \ge t_{\max}} J_{\lambda}(tu),$$

$$J_{\lambda}(t^{+}u) = \inf_{0 \le t \le t^{-}} J_{\lambda}(tu),$$

This completes the proof.

Let $\theta = \{x \in \Omega | h(x) > 0\}$. We know that θ is a open set in \mathbb{R}^N , because that $h \in C^{\circ}(\Omega)$ Consider the following elliptic equation

$$\begin{cases} -\Delta_p u = g(x) |u|^{s-1} u, & in\theta, \\ 0 \le u, & in\theta, \\ u = 0, & on\partial\theta, \end{cases}$$

 (E_{θ})

$$k(u) = \frac{1}{p} \int_{\theta} |\nabla u|^p dx - \frac{1}{s+1} \int_{\theta} g(x) |u|^{s+1} dx,$$

and the Nehari minimization problem

$$\beta(\theta) = \inf\{k(u) | u \in N\},\$$

where
$$N = \{u \in X(\theta) \setminus \{0\} | \langle k'(u), u \rangle = 0\}$$
 and $X(\theta) = W_0^{1,p}(\theta)$. Then we have the following results.

Lemma 2.5: Equation (E_{θ}) has a positive solution w_0 uch that $k(w_0) = \beta(\theta) > 0$

Proof: First, we need to show that k is bounded below on N and $\beta > 0$ For $u \in N$

$$\int_{\theta} \left| \nabla u \right|^{p} dx = \int_{\theta} g(x) \left| u \right|^{s+1} dx$$

$$\leq \left\| g \right\|_{L^{s_0}} \frac{1}{\sum_{p=1}^{s+1}} \left(\int_{\theta} \left| \nabla u \right|^{p} dx \right)^{\frac{s+1}{p}}.$$

This implies

$$\int_{\theta} \left| \nabla u \right|^{p} dx \ge \left(\frac{\frac{s+1}{p}}{\left\| g \right\|_{L^{s_0}}} \right)^{\frac{p}{s+1-p}}. \tag{7}$$

Hence for all $u \in N$

$$k(u) = \frac{1}{p} \int_{\theta} |\nabla u|^{p} dx - \frac{1}{s+1} \int_{\theta} g(x) |u|^{s+1} dx$$

$$\ge \left(\frac{1}{p} - \frac{1}{s+1} \right) \left(\frac{\frac{s+1}{p}}{\|g\|_{L^{s_0}}} \right)^{\frac{p}{s+1-p}} > 0.$$

This implies $\beta > 0$ Let (w_n) be a minimizing sequence for k on N, then by (7) and the compact embedding theorem, without loss of generality we may assume that there exist w_0 in $X(\theta)$ such that $w_n \xrightarrow{w} w_0$ weakly in

$$X(\theta)$$
 and $w_n \longrightarrow w_0$ strongly in L^{s+1} (8)

We claim that $\int_{\theta} g(x) |w_0|^{s+1} dx > 0$. Otherwise by (8)

we can conclude that

$$\int_{\theta} g(x) |w_n|^{s+1} dx \to 0 \qquad \text{as} \qquad n \to \infty$$

Thus $||w_n||_{Y(\theta)}^p = 0(1)$ and

$$k(w_n) = \frac{1}{p} \int_{\theta} |\nabla w_n|^p dx - \frac{1}{s+1} \int_{\theta} g(x) |w_n|^{s+1} dx \to 0$$

$$n \to \infty$$

as

This contradicts $k(w_n) \rightarrow \beta > 0$ as $n \rightarrow \infty$ Thus, $\int_{\theta} g(x)|w_0|^{s+1} dx > 0.$ In particular, $w_0 \neq 0$ Now, we shall prove that $w_n \rightarrow w_0$ strongly in $X(\theta)$ therwise we have

$$\int_{\theta} \left| \nabla w_0 \right|^p dx < \liminf_{n \to \infty} \int_{\theta} \left| \nabla w_n \right|^p dx$$

and hence

$$\int_{\theta} \left| \nabla w_0 \right|^p dx - \int_{\theta} g(x) \left| w_0 \right|^{s+1} dx$$

$$< \liminf_{n \to \infty} \left(\int_{\theta} \left| \nabla w_n \right|^p dx - \int_{\theta} g(x) \left| w_n \right|^{s+1} dx \right) = 0.$$

By $\int_{\theta} g(x)|w_0|^{s+1} dx$, there exist a unique $t_0 \neq 1$ such that $t_0 w_0 \in N$ Thus, $t_0 w_0 \xrightarrow{w} t_0 w_0$ weakly in $X(\theta)$ and so

$$k(t_0 w_0) < k(w_0) < \lim_{n \to \infty} k(w_n) = \beta$$

Which is a contradiction. Hence $w_n \rightarrow w_0$ strongly in $X(\theta)$. This implies $w_0 \in N$ and

$$k(w_n \to k(w_0) = \beta \text{ as } n \to \infty$$

We may assume that w_0 is a positive solution of Eq. (E_0) . **Lemma 2.6:**

• There exists $t_{\lambda} > 0$ such that

$$\alpha_{\lambda} \leq \alpha_{\lambda}^{+} < -\frac{p-r-1}{r+1}t_{\lambda}^{2}\beta(\theta) < 0,$$

• J_{λ} is coercive and bounded bellow on M_{λ} for all

$$\lambda \in \left(0, \frac{s+1-p}{s-r}\right]$$

Proof:

• Let w_0 be a positive solution of Eq. (E_0) such that $k(w_0) = \beta(\theta)$ Then

$$\int_{\Omega} h(x) w_0^{r+1} dx = \int_{\theta} h(x) w_0^{r+1} dx > 0.$$

Set $t_{\lambda} = t^{+}(w_{0})$ as defined by Lemma (2.4)

Hence $t_{\lambda}w_0 \in M_{\lambda}^+$ and

$$J_{\lambda}\left(t_{\lambda}w_{0}\right) = \frac{t_{\lambda}^{p}}{p} \left\|w_{0}\right\|_{X}^{p} - \frac{t_{\lambda}^{s+1}}{s+1} \int_{\Omega} g\left(x\right) \left|w_{0}\right|^{s+1} dx$$

$$-\frac{\lambda t_{\lambda}^{r+1}}{r+1} \int_{\Omega} h(x) |w_{0}|^{r+1} dx = \left(\frac{1}{p} - \frac{1}{r+1}\right) t_{\lambda}^{p} ||w_{0}||_{X}^{p}$$

$$+ \left(\frac{1}{r+1} - \frac{1}{s+1}\right) t_{\lambda}^{s+1} \int_{\Omega} g(x) |w_{0}|^{s+1} dx$$

$$< -\frac{p-r-1}{r+1} t_{\lambda}^{p} \beta(\theta) < 0.$$

This yields

$$\alpha_{\lambda} \le \alpha_{\lambda}^+ < -\frac{p-r-1}{r+1} t_{\lambda}^p \beta(\theta) < 0.$$

For $u \in M_{\lambda}$ we have

$$||u||_X^p = \int_{\Omega} g(x)|u|^{s+1} dx + \lambda \int_{\Omega} h(x)|u|^{r+1} dx.$$

Then using the Holder an Young inequalities

$$J_{\lambda}(u) = \frac{s+1-p}{p(s+1)} \|u\|_{X}^{p}$$

$$-\lambda \left(\frac{s-r}{(r+1)(s+1)}\right) \int_{\Omega} h(x) |u|^{r+1} dx$$

$$\geq \frac{s+1-p}{p(s+1)} \|u\|_{X}^{p}$$

$$-\lambda \left(\frac{s-r}{(r+1)(s+1)}\right) \|h\|_{L^{r_{0}}} \frac{1}{\frac{r+1}{S}} \|u\|_{X}^{r+1}$$

$$\geq \left[\left(\frac{s+1-p}{p(s+1)}\right) - \lambda \left(\frac{s-r}{p(s+1)}\right)\right] \|u\|_{X}^{p}$$

$$-\lambda \left(\frac{(s-r)(p-r-1)}{p(s+1)(r+1)}\right) \left(\|h\|_{L^{r_{0}}} \frac{1}{\frac{r+1}{S}}\right)^{\frac{p}{p-r-1}}$$

$$= \frac{1}{p(s+1)} \left[(s+1-p) - \lambda(s-r)\right] \|u\|_{X}^{p}$$

$$-\lambda \left(\frac{(s-r)(p-r-1)}{p(s+1)(r+1)}\right) \left(\|h\|_{L^{r_{0}}} \frac{1}{\frac{r+1}{S}}\right)^{\frac{p}{p-r-1}}.$$

Thus, J_{λ} is coercive on M_{λ} and

$$J_{\lambda}(u) \ge -\lambda \left(\frac{(s-r)(p-r-1)}{p(s+1)(r+1)}\right) \left(\|h\|_{L^{r_0}} \frac{1}{\frac{r+1}{S}}\right)^{\frac{p}{p-r-1}}$$

for all
$$\lambda \in \left(0, \frac{s+1-p}{s-r}\right]$$

Proof of Theorem 1.1.

Theorem 3.1: Let
$$\lambda_0 = \min \left\{ \lambda_1, \lambda_2, \frac{s+1-p}{s-r} \right\}$$
 for each λ

 $\epsilon(0,\lambda_0)$

There exists a minimizing sequence $\{u_n\} \subset M_\lambda$ such that

$$J_{\lambda}(u_n) = \alpha_{\lambda} + 0(1)$$
 , $J'_{\lambda}(u_n) = 0(1)$ in χ^{-1}

There exists a minimizing sequence $\{u_n\} \subset M_{\lambda}^-$ such that

$$J_{\lambda}(u_n) = \alpha_{\lambda}^- + 0(1)$$
 , $J_{\lambda}'(u_n) = 0(1)$ in X^{-1}

Proof: The proof is almost the same as that in [3, Proposition 9] and we omit that.

Now we establish the existence of a local minimum for J_{λ} on M_{λ}^{+} .

Theorem 3.2: Let $\lambda_0 > 0$ as in Proposition 3.1, then for $\lambda \in (0, \lambda_0)$ the functional J_{λ} has a minimizer u_0^+ in M_{λ}^+ and it satisfies

(I)
$$J_{\lambda}(u_0^+) = \alpha_{\lambda} = \alpha_{\lambda}^+$$

(ii) u_0^+ is a positive solution of Eq. (E_{λ})

(iii)
$$J_{\lambda}(u_0^+) \rightarrow 0$$
 as $\lambda \rightarrow 0$

Proof: Let $\{u_n\}$ be a minimizing sequence J_{λ} on M_{λ} such that

$$J_{\lambda}(u_n) = \alpha_{\lambda} + 0(1), J'_{\lambda}(u_n) = 0(1) \text{ in } X^{-1}$$

then by Lemma (2.6) and the compact imbedding theorem, there exist a subsequence $\{u_n\}$ and $u_0^+ \in X$ such that

$$u_n \to u_0^+$$
 weakly in X

$$u_n \to u_0^+$$
 strongly in L^{s+1}

$$u_n \to u_0^+$$
 strongly in $L^{s+1}(\Omega)$

First, we claim that $\int_{\Omega} h(x) |u_0^+|^{r+1} dx \neq 0$. If not, by (9) we

conclude that

$$\int_{\Omega} h(x) \left| u_0^+ \right|^{r+1} dx = 0$$

and

$$\int_{\Omega} h(x) |u_n|^{r+1} dx \to 0 \text{ as } n \xrightarrow{u_n} \infty \to u_0^+$$

Thus

$$\int_{\Omega} \left| \nabla u \right|^p dx = \int_{\Omega} g(x) \left| u \right|^{s+1} dx + 0(1),$$

and

$$\begin{split} &J_{\lambda}(u_{n}) = \frac{1}{p} \int_{\Omega} \left| \nabla u_{n} \right|^{p} dx - \frac{1}{s+1} \int_{\Omega} g(x) \left| u_{n} \right|^{s+1} dx \\ &- \frac{\lambda}{r+1} \int_{\Omega} h(x) \left| u_{n} \right|^{r+1} dx \\ &= \left(\frac{1}{p} - \frac{1}{s+1} \right) \int_{\Omega} g(x) \left| u_{n} \right|^{s+1} dx + O(1) \\ &= \left(\frac{1}{p} - \frac{1}{s+1} \right) \int_{\Omega} g(x) \left| u_{0} \right|^{s+1} dx \quad as \ n \to \infty, \end{split}$$

this contradicts $J_{\lambda}(u_n) \to \alpha_{\lambda} < 0$ as $n \to \infty$ In particular, $u_0^+ \in M_{\lambda}$ is a nonzero solution of Eq. (E_{λ}) and $J_{\lambda}\left(u_0^+\right) \ge \alpha_{\lambda}$. We now prove that $u_n \to u_0^+$ strongly in X. Supposing the contrary, then $\left\|u_0^+\right\|_X < \liminf_{n \to \infty} \left\|u_n\right\|_X$

and so

this contradicts with $u_0^+ \in M_\lambda$. Hence strongly in X. This implies

$$J_{\lambda}(u_n) \to J_{\lambda}(u_0^+) = \alpha_{\lambda} \text{ as } n \to \infty.$$

Moreover, we have $u_0^- \in M_\lambda^-$, In fact, if $u_0^- \in M_\lambda^-$, by Lemma (2.4) there exists unique t_0^+ and t_0^- such that $t_0^+ u_0^+ \in M_\lambda^+$ and $t_0^- u_0^+ \in M_\lambda^-$, we have $t_0^+ < t_0^- = 1$. Since 0

$$\frac{d}{dt}J_{\lambda}\left(t_{0}^{+}u_{0}^{+}\right)=0 \text{ and } \frac{d^{2}}{dt^{2}}J_{\lambda}\left(t_{0}^{+}u_{0}^{+}\right)>0,$$

there exists $t_0^+ < t^- \le t_0^-$ such that

$$J_{\lambda}\left(t_0^+u_0^+\right) < J_{\lambda}\left(t^-u_0^+\right).$$

By Lemma (2.4) we conclude that

$$J_{\lambda}\left(t_{0}^{+}u_{0}^{+}\right) < J_{\lambda}\left(t^{-}u_{0}^{+}\right) \leq J_{\lambda}\left(t_{0}^{-}u_{0}^{+}\right) = J_{\lambda}\left(u_{0}^{+}\right),$$

Which is a contradiction. Since $J_{\lambda}\left(u_{0}^{+}\right)=J_{\lambda}\left(\left|u_{0}^{+}\right|\right)$ and $\left|u_{0}^{+}\right|\in M_{\lambda}^{+}\left(\Omega\right)$, and using Lemma (2.2) we may assume that u_{0}^{+} is nonnegative solution. By [4, Lemma(2.1)] we have $u_{0}^{+}\in L^{\infty}\left(\Omega\right)$. Then we can apply the Harnack inequality [5] in order to get that u_{0}^{+} is positive in Ω Moreover, by Lemma (2.6), $J_{\lambda}\left(u_{0}^{+}\right)<0$ and

$$J_{\lambda}\left(u_{0}^{+}\right) \geq -\lambda \left(\frac{(s-r)(p-r-1)}{p(s+1)(r+1)}\right) \left(\|h\|_{L^{r_{0}}} \frac{1}{\frac{r+1}{S^{p}}}\right)^{\frac{p}{p-r-1}}.$$

We obtain $J_{\lambda}(u_0^+) \to 0$ as $\lambda \to 0$

Next, we establish the existence of a local minimum for J_{λ} on M_{λ}^{-} .

Theorem 3.3: Let $\lambda_0 > 0$ as in Proposition 3.1, then for $\lambda \in (0,\lambda_0)$ the functional J_λ has a minimizer u_0 in M_{λ}^- nd it satisfies

(I)
$$J_{\lambda}(u_0^-) = \alpha_{\lambda}^-$$

(ii) u_0^- is a positive solution of Eq.(E_λ).

Proof: By Proposition 3.1 (ii), there exists a minimizing sequence $\{u_n\}$ for J_{λ} on M_{λ}^{-} such that

$$J_{\lambda}\left(u_{0}\right)=\alpha_{\lambda}^{-}+0\left(1\right) \text{ and } J_{\lambda}'\left(u_{n}\right)=0\left(1\right) \text{ in } X^{-1}.$$

By Lemma (2.1) and the compact imbedding theorem, there exist a subsequence $\{u_{\mathbf{n}}\}$ and $u_{0}^{-}\in M_{\lambda}^{-}$ such that

$$u_n \to u_0^-$$
 weakly in X

$$u_n \to u_0^-$$
 strongly in L^{s+1}

$$u_n \to u_0^-$$
 strongly in $L^{r+1}(\Omega)$

We now prove that $u_n \to u_0^-$ strongly in X.

Suppose otherwise, then
$$\left\|u_0^-\right\|_X < \liminf_{n \to \infty} \left\|u_n\right\|_X$$
 and so
$$\left\|u_0^-\right\|_X^p - \int_{\Omega} g(x) \left|u_0^-\right|^{s+1} dx - \lambda \int_{\Omega} h(x) \left|u_0^-\right|^{r+1} dx$$

$$< \liminf_{n \to \infty} \left(\left\|u_n\right\|_X^p - \int_{\Omega} g(x) \left|u_n\right|^{s+1} dx$$

$$-\lambda \int_{\Omega} h(x) \left|u_n\right|^{r+1} dx\right) = 0.$$

This contradicts with $u_0^- \in M_\lambda^-$. Hence $u_n \to u_0^-$ strongly in X. This implies

$$J_{\lambda}(u_n) \to J_{\lambda}(u_0^-) = \alpha_{\lambda}^- \text{ as } n \to \infty.$$

Since $J_{\lambda}\left(u_{0}^{-}\right) = J_{\lambda}\left(\left|u_{0}^{-}\right|\right)$ and $\left|u_{0}^{-}\right| \in M_{\lambda}^{-}(\Omega)$ by Lemma (2.2) we may assume that u_{0}^{-} is a nonnegative solution, $u_{0}^{-} \geq 0$ in Ω and $u_{0}^{-} \neq 0$.

Now, we complete the proof of Theorem (1.1). By Theorems (3.2), (3.3), for Eq.(E_{λ}) there exist two positive solutions u_0^+ and u_0^- such that

$$u_0^+ \in M_{\lambda}^+, u_0^- \in M_{\lambda}^-.$$

Since $M_{\lambda}^+ \cap M_{\lambda}^- = \emptyset$. This implies that u_0^+ and u_0^- are different.

REFERENCES

- Afrouzi, .G. and S. Khademloo, 2007. The Nehari manifold for a slass of indefinite weight semilinear elliptic equations, Bulletin of the Iranian Mathematical Society, 33(2): 49-59.
- 2. Tarantello, G., 2003. On nonhomogeneous elliptic equations involing critical Sobolve exponent, Ann. Inst., 52: 1017-1034.
- Wu, T.F., 2006. On semiliner elliptic equations involving concave- convex nonlinearities and signchanging weight function, J. Math. Anal. Appl., 318: 253-270.
- Drabek, P., A. Kufner and F. Nicolosi, 1997.
 Quasilinear Elliptic Equations with Degenerations and Singularitices, de Gruyter. Nonliner Anal. Appl, vol. 5, de Gruyter, New York,
- 5. Trudinger, N.S., 1967. On Harnack type inequalities and their application to quasiliner elliptic equations, Comm. Pure Appl. Math., 20: 721-747.