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INTRODUCTION (1.2)

Developable surfaces are especially important to the
home boatbuilder because they are often working with
sheet materials like plywood, steel or aluminum.
Developable surfaces can be formed from flat sheets
without stretching, so the forces required to form sheet
materials into developable surfaces are much less than for
other surfaces. In some cases, particularly with plywood,
the force required to form non-developable surfaces could
be so large that the material is damaged internally when it
is formed. Another advantage of developable surfaces is
that the development, or flattened out shape, of such a
surface is exact. When other types of surfaces are
expanded (note the difference in terms - " expansion" is
flattening out a non-developable surface) the shape of the
expansion depends on the distortion field applied to form
it, so that there is no single exact expansion without
detailed forming information. If you are either designing
or lofting plywood or metal hulls you should understand
developable surfaces and the methods for working with
them.

On the other hand, harmonic maps f :(M , g) (N ,h)
between Riemannian manifolds are the critical points of
the energy 

(1.1)

and they are therefore the solutions of the corresponding
Euler--Lagrange equation. This equation is given by the
vanishing of the tension field

As suggested by Eells and Sampson in [8], we can
define the bienergy of a map f  by

(1.3)

and say that is biharmonic if it is a critical point of the
bienergy.

Jiang derived the first and the second variation
formula for the bienergy in [10,11], showing that the Euler-
-Lagrange equation associated to E  is 2

(1.4)

Where J  is the Jacobi operator of f  . The equationf

 is called the biharmonic equation. Since J  isf

linear, any harmonic map is biharmonic. Therefore, we are
interested in proper biharmonic maps, that is non-
harmonic biharmonic maps.

In this paper, we study in particular developable
surfaces, a special type of ruled surface in the Lorentzian
Heisenberg group Heis . We give necessary and3

sufficient conditions for null biharmonic curves in the
Lorentzian Heisenberg group Heis . We find out explicit3

parametric equations of tangent developable of
biharmonic curve in the Lorentzian Heisenberg group
Heis3
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The Lorentzian Heisenberg Group Heis : The Lorentzian3

Heisenberg group Heis  can be seen as the space R3 3

endowed with the following multiplication:

Heis  is a three-dimensional, connected, simply3

connected and 2-step nilpotent Lie group.

The Lorentz metric g is given by:

Where

is the left-invariant orthonormal coframe associated with
the orthonormal left-invariant frame,

(2.1)

for which we have the Lie products

With
(2.2)

Proposition 2.1: For the covariant derivatives of the Levi-
Civita connection of the left-invariant metric g, defined
above the following is true:

(2.3)

Where the (i, j)-element in the table above equals

for our basis

We adopt the following notation and sign
convention for Riemannian curvature operator:

The Riemannian curvature tensor is given by

Moreover we put

ewhere the indices a, b, c and d take the values 1,2 and 3.

and
(2.4)

3 Null Biharmonic Curves in the Lorentzian Heisenberg
 Group Heis : Let  : Heis be a null curve on the3 3

Lorentzian Heisenberg group Heis  parametrized by arc3

length. Let {T, N, B} be the Frenet frame fields tangent to
the Lorentzian Heisenberg group Heis  along   defined as3

follows:
T is the unit vector field ´ tangent to , N is the unit

vector field in the direction of T (normal to ) and B isT

chosen so that {T, N B} is a positively oriented
orthonormal basis. Then, we have the following Frenet
formulas:

(3.1)

Where

(3.2)

and k  is the curvature of  and k  is its torsion. With1 2

respect to the orthonormal basis , we can write

(3.3)

Theorem 3.2. Let  :  Hies be a non-geodesic null3

curve parametrized by arc length.   is a non-geodesic null
biharmonic curve if and only if

(3.4)

Corollary 3.3. Let  : Heis  be a null curve with3

constant curvature and N B  0. Then  is not1 1

biharmonic [21].

Corollary 3.4.  :  Heis  is null biharmonic if and only if3

(3.5)
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Corollary 3.6. If N  = 0,, then (4.1)1

(3.6)

Where .
Proof: Using Corollary 3.4,  we obtain (3.6) and corollary
is proved.

4  Tangent Developable of Null Biharmonic Curve in the
Lorentzian Heisenberg Group Heis : Ruled surfaces are3

swept out by the motion of a straight line in space. More
formally, the image of the map Ô  : ×R  Heis defined( , ) 3

by

Ô (s, u)= (s)+u (s), (s, u) = 0(  , )

is called a ruled surface in Heis  where :  Heis  : 3 3

Heis  are smooth mappings and  is an open interval or a3

unit circle S .1

We call  the base curve and  the director curve.
The straight lines  are called rulings.

Note that we allow our ruled surfaces to possess
singular points, that is points at which the partial
derivatives of Ô  are linearly indepedent, i.e. which(  , )

satisfy

Ô (s,u)×Ô (s,u)= 0s u

We now consider a special type of ruled surface,
which has been studied for over a century, the
developable surface. Informally, these are surfaces which
can be  attened onto a plane without distortion, so are a
transformation (e.g. folding or bending)  of  a  plane in
Heis . It is this fundamental property which has long3

ensured their useful application in engineering and
manufacturing. More recently, their use has spread to the
computer sciences, in computer-aided design; their
isometric properties make them ideal primitives for texture
mapping.

Definition 4.1. A smooth surface Ô  is called a( , )

developable surface if its Gaussian curvature K vanishes
everywhere on the surface.

Proposition 4.2. A ruled surface is a developable surface
[4] if:

We can give a geometric interpretation of Proposition
4.2 by computing the Gaussian curvature at a regular
point. Since

Ô  = +u ,Ô = , Ô  = 0 (4.2)tt tu uu

Computations of the coeffecients of the second
fundamental form give:

(4.3)

Ô (s, u)= (s)= (s)+u  (s) (4.4)(  , )

The tangent developable is the envelope of the family
of osculating planes along , where the osculating plane
at  (s) is  the  plane  generated  by  the   tangent  vector

´(s) and the principal normal N(s).

Theorem 4.3.  : Heis  be a non-geodesic null curve3

on Lorentzian Heisenberg group Heis   parametrized by3

arc length. Then, the parametric equations for tangent
developable of  are

(4.5)
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Fig. 1: Fig. 2:

Where a , a , a   is constant of integration and1 2 3

.

Proof: The covariant derivative of the vector field T is:

(4.6)

From (3.6), we have

Since   we obtain
(4.7)

Where R and .

Using (2.1), we get

Therefore, we easily have:

(4.8)

By direct computations, substituting (4.8) in (4.4), we
get (4.5).

If we use Mathematica in Theorem 4.3 for different
constant, yields
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