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Computing of Periodic Hamiltonian Matrices in Quantum Physics
with Using PSM Method and WKB Approximation

Heydar Izadneshan
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Abstract: We consider the numerical solution of periodic potential in quantum physics eigen problems with
using of numerical method that exhibit Hamiltonian symmetry. In the present paper we will review our preceding
result and continue with numerical solution of periodic hamiltonian forwith psm method. And then we also
compare with analytical method. We propose to solve such problems by applying a particle source method
based on the numerical green function process. In order to compute interior eigen values, we discuss several
shift-and-invert operators with Hamiltonian structure. Our approach is tested for Hamiltonian example in
sinusoidal-form.
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INTRODUCTION

Numerical simulation using computers has
increasingly become a very important approach for
solving problems in engineering and science. It plays a
valuable role in providing tests and examinations for
theories, offering insights to complex physics and
assisting in the interpretation and even the discovery of
new phenomena.Hamiltonian PDEs arise as models in
nuclear physics, meteorology and weather prediction,
nonlinear optics, solid mechanics and elastodynamics,
oceanography, electromagnetism, cosmology and
quantum field theory, for example. It is now well known
from the development of algorithms for large Hamiltonian
that ‘psm method’ is an important guiding principle.

Numerical simulations follow a similar procedure to
serve a practical purpose. here are in principle some
necessary steps in the procedure, as shown in Figure 1.
From the physical phenomena observed, mathematical
models are established with some possible simplifications
and assumptions. These mathematical models are enerally
expressed in the form of governing equations with proper
boundary conditions (BC) and/or initial conditions (IC).
The governing equations may be a set of ordinary
differential equations (ODE), partial differential equations Fig. 1: Procedure of conducting a numerical simulation
(PDE), integration equations or equations in any other
possible forms of physical laws. Boundary and/or initial Monte Carlo Method: The Monte Carlo method is a
conditions are necessary for determining the field numerical solution to a problem that models objects
variables in space and/or time. interacting  with other objects or their environment based
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upon simple object-object or objectenvironment has been extended to the finite temperature case by
relationships. It represents an attempt to model nature introducing random sampling over the ground and excited
through direct simulation of the essential dynamics of the states [7].
system  in  question.  In  this  sense  the  Monte  Carlo In this article we use a fast algorithm for the Green's
method  is  essentially  simple  in  its  approach|a  solution functions called Particle Source Method and applied it in
to a macroscopic system through simulation of its nuclear fusion potential barrier. The Particle Source
microscopic interactions [1]. Method has been established by Toshiaki Iitaka and

A solution is determined by random sampling of the successfully applied to large disordered systems, [10].
relationships, or the microscopic interactions, until the This methods is based on the numerical solution of the
result converges. Thus, the mechanics of executing a time-dependent Schrödinger equation, use random
solution involves repetitive action or calculation. To the vectors for calculating the trace and have advantages in
extent that many microscopic interactions can be modeled implementing on vector-parallel supercomputers. Since
mathematically, the repetitive solution can be executed on this method do not rely on the locality of the wave
a computer. However, the Monte Carlo method predates functions in contrast to many other fast methods, it has
the computer (more on this later) and is not essential to been successfully applied to the phenomena originating
carry out a solution although in most cases computers from the global coherency of the wave function such as
make the determination of a solution much faster. There the size effects of nanostructures [10].
are many examples of the use of the Monte Carlo method
that can be drawn from social science, trafic flow, Particle Source Method: In many fields of quantum
population growth, finance, genetics, quantum chemistry, physics, evaluation of the Green's functions constitutes
radiation sciences, radiotherapy and radiation dosimetry the most important and demanding part of numerical
but our discussion will concentrate on the simulation of treatment. Therefore efficient numerical algorithms, such
neutrons, photons and electrons being transported in as recursive Green's function methods, quantum Monte
condensed materials, gases and vacuum. We will make Carlo methods, the Lanczos methods and Forced
brief excursions into other kinds of Monte Carlo methods Oscillator Method (FOM) have been developed and
when they they serve to elucidate some point or when applied to various problems. In this section we introduce
there may be a deeper connection to particle-matter another  algorithm  (the  Particle  Source Method; PSM)
interactions or radiation transport in general [2]. for calculating the Green's functions that uses numerical

Quantum Monte Carlo methods, which generate the solutions of the time-dependent Schrödinger equation
imaginary-time Green's functions, have been successfully with a source term. The PSM can be regarded as a
used for evaluating thermodynamic quantities of relatively quantum version of the FOM and is expected to play an
large  systems  [3].  For  evaluating  dynamic  quantities important role in computational physics by
such as conductivity, however, one has to rely on complementing the quantum Monte Carlo methods and
numerical analytic  continuation  (e.g., maximum ntropy Lanczos methods [8].
method) from the imaginary-time Green's functions to the
real-time ones. This procedure is, however, not Single Frequency Calculation: Let us introduce the time-
unambiguous due to two reasons: one is the statistical dependent Schroedinger equation with a time-dependent
errors originating from Monte Carlo sampling, which are source term,
amplified by numerical  analytical  continuation and the
other is the bias introduced by the default model in the (1)
maximum entropy method [4].

The Lanczos methods have been one of few reliable
techniques for evaluating dynamical responses of Where the wave function | ;t  and an arbitrary source |j
moderate-size Hamiltonian matrices [5]. The Lanczos are N-component complex vectors, the Hamiltonian H is
methods use a linear transformation to a new basis in an N × N Hermitian matrix,  is the frequency of the
which the Hamiltonian matrix has a tridiagonal form and source and  is a small positive imaginary part of the
lead to a continued fraction representation of the diagonal frequency, which determines the resolution of frequency.
matrix elements of the Green's function. The drawback of Note that this source term grows up exponentially as a
these methods is the numerical instability which may lead function of time due to this small positive number, which
to spurious eigenstates. Recently, the Lanczos method simulates adiabatic switching on of the particle source.
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This adiabatic switching on, which has been absent in the Since the numerical error due to the finite timestep is
preceding works, is essential to calculate the exact shape proportional to ( t) , the best choice of  is = 0 [11].
of the Green's function as a function of energy [8]. The matrix elements with energy  0 can be obtained by

The solution of this equation with the initial calculating the shifted green's function at  = 0
condition | ;t = 0  becomes [9].

| ;t

(2) With the shifted Hamiltonian

(3)

(4) Multiple Frequency Calculation: Let us introduce the

(5)

Where we have neglected the second term in the (11)
parentheses of (3). This approximation is justified by
using sufficiently long time t  satisfying the condition1

e (6)t
1

Where  is the required relative accuracy of the Green's | ;t = 0  = 0 becomes
function.

Then, from the Fourier transformation of (5), the | ;t
Green's function operated on the ket |j  is obtained as

(7)

If only one or few matrix elements are necessary, we (15)
can calculate only these matrix elements as:

parentheses of (13) as in the single frequency calculation.

(8)

Where i| is an arbitrary bra.

3

(9)

(10)

Where I is the unit matrix. 

time-dependent Schroedinger equation with a multiple
frequency source term,

Where  = l .t

The  solution of this equation with the initial condition

(12)

(13)

(14)

Where we have neglected the second term in the

Then, from the Fourier transformation of (15), the
matrix elements of the Green's function are obtained as.

(16)
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(17)
(18)

Where we have neglected the second term in (17). This
approximation is justified by using sufficiently long time
t  satisfying the condition2

(19)

Solving the Schroedinger Equation: To solve the time-
dependent Schroedinger equation (1) numerically, we
discretize it by using the leap frog method [11],

(20)
Where t is the time step. The time step is set as

(21)

Where E  is the absolute value of the extrememax

eigenvalue. We usually use the parameter  between 10 1

and 10 .2

Another method for the time-dependent Schroedinger
equation  is  the  Suzuki-Trotter decomposition of the
time-evolution operator. Though the Suzuki-Trotter
decomposition can be applied effectively only to a special
class of Hamiltonian, it might have the advantage of the
leap frog method. First it allows larger time step. Second
it can be used with non-Hermitian Hamiltonian, such as
the Hamiltonian with absorbing boundary condition.

Product of the Green's Functions: Since |j  in (1) is an
arbitrary ket, we can repeat the calculation of the Green's
function by using a new source term,

(22)

Where A  is an arbitrary operator whose matrix elements1

are known. In general, we can calculate the matrix
elements of a product involving several Green's functions
and other operators as

(23)

Applying to Periodic Potential: Let us study the
Hamiltonian of an electron in one dimensional space with
periodic potential,

(24)

Where m  is mass of electron and V(x) is the potential.e

In general, the barriers that occur in physical
phenomena are not square  and to discuss some
applications, we must first obtain and approximate
expression for the transmission coefficient |T | through an2

irregularly shaped barrier. The most potentials is through
the Wentzel-Kramers-Brillouin (WKB) approximation
technique [14].

We observe that consist of a product of two terms,
the second of which is by far the more important one. If
we write.

(25)

We see that under most circumstance the first term
dominates the second for any reasonable size of . The
procedure we adopt is to treat a smooth, curved barrier as
a juxtaposition of square barriers (Fig. 2). Since
transmission coefficients are multiplicative when they re
small (in effect, with most of the flux event), we may write
approximately.

(26)

In the partial barriers, x is the width and  the
average value of  for that barrier. In the last step a limit
of infinitely narrow barriers was taken. It is clear from the
expression that the approximation is least accurate near
the “ turning points “ where the energy and potential are
nearly equal. It is also important that V(x) be a slowly
varying function of x, since otherwise the approximation
of carved barrier by a stack of square ones is only
possible if the latter are narrow and there again x is a
poor approximation.

One particular example of such symmetric potential
can be found in sinusoidal-form potential:

V = sin (27)
that

V (x) = V (-x)

After discretizing in space with the lattice size X, the
Hamiltonian is pproximated by a tight binding form,
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Fig. 2: Approximation of smooth barrier by juxtaposition of square potential barriers

(a) (b)

Fig. 3: (a) real part and (b) imaginary part of G( +i )

(32)

(28) Where A is a normalizing constant and m is an

Where  = V(x ) and c  and  are the creation and 0±1,±2,...,±(N –1)/2, for odd N. Note that (31) approximatesn n n
t

annihilation operator of electron at the site x  = n × x well the parabolic dispersion relation (24) of then

(n=0,1,…,N). The periodic boundary condition is set as continuum model, if m N or E 1. In the following, we set

n = 0| = n = N| (29) Figure 3b. shows the imaginary part of the Green's

Where V(x) = 0 is the electron state at the n-th site. is the energy measured from the band center. The
When V (x) = 0, the exact analytical eigenstates and numerical result reproduces faithfully the exact spectrum
eigenvalues of the Hamiltonian (28) with the boundary (31) of the Hamiltonian (24).
condition (29) are well known, Figure 3a,3b. compares the Green's function

(30) multiple frequency method to the exact analytical result.

(31) result in the limit N  and  +0 is calculated by using

integer m = 0±1,±2,...,±(N –2)/2,N/2 for even N and m =

 = m  = x = 1 for simplicity [].e

function G( +i ) for N = 10 and  = 0.1, where  = E –1

G ( +i ) of a long perfect lattice calculated by thenm

For the numerical calculation, we used parameters,  = 0,
 = 10 ,  = 10  and  = 5 ×10  and N = 10 . The exact3 2 2 6

the analytical expression [13],
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