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with the Anisotropic Helmholt-Shrodinger Equation
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Abstract: In this paper, solvability of one the anisotropic Helmholt-Shrodinger equation with the boundary
conditions of the first and second type is investigated in the upper and the lower half-plan (y >0, y <0).
In general, necessary and sufficient conditions for the correctness of the problem in the Sobolev space are
presented as well as explicit formulas for a factorization of the Fourier symbol matrix of the one-medium problem.
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INTRODUCTION

Investigated a certain class of diffraction problems
leading to simultaneous 2 x 2 systems of Wiener-Hopf
equations. First the classical Wiener-Hopf technique,
represented by Noble [1].

This type of  Problems studied by
AJ.Sommerfeld for the wave diffraction on the
interface of two media [2, 3] and were
investigated in the isotropic case [3, 4] and studied the
problem of finding a function u in a suitable space with
satisfies [3].

Various physical problem in diffraction theory
lead us to study modification of the Sommerfeld
half-plane governed by two proper elliptic partial
differential equation is complementary R’ half-space Q*
and allow different boundary or transmission condition on

Au + (kf + Zﬁfsechz(ﬁer)) u=0 in QF
Au+ (k} + 2ﬂ_zsech2(ﬂ_y)) u=0 in Q

two half-lanes, which together form the common
boundary of Q* [3].

In this paper we investigate solvability of the
boundary value problem coordinated with the anisotropic
Hembholt-Shrodinger equation, in the sobolev spaces.
Further we prove that solvability of the boundary value
problem is equivalent to the solvability of the some
Riemann-Hilbert problem.

Convention: As a rule, upper or lower indices + are related
to the half-spaces Q" except for some standard notation R,
and ,!.

H 2

Investigate solvability of anisotropic boundary value
problem.

Consider the following anisotropic Helmholtz-
Schrodinger equation

(1)

Let Q= {(x, y)e R*: y >0, y < 0}, where Im (k.)> 0 and let H"* (Q*) and H'* (€°) are the corresponding sobolev

spaces (see [5].
Now we suppose the following boundary conditions

agu(x,+0) + byu(x,—0) = hy(x)
_ in R*
4 ou(x,+0) ih Ou(x,—0) _ Iy (x) m
o )
cou(x,+0) + dyu(x,—0) = py(x)
i in R~
Cl 8u(;),}+0) +d, ou(x,—0) _ 21(%)
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where 1, € H*(R"), p, € H*(R), p, € H*(R) and a,, a,, b, b,, c,, ¢, d,, d,, are complex constants. For finding the
solution of the boundary value problem (1) in the L*(R?), apply Fourier integral transform to the solution u € L*(L*), over
the variable x one derives the following system of ordinary differential equations

2 A
d—”+(;<f(/1)+2ﬂfsech2(ﬁ+y)) i=0, for y>0
dy2

d*i )

2

+(Kg(l)+2ﬁ_zsech2(ﬂ_y)) i=0, for y<0.
dy

Then i € L¥(L?), we denote , 5 - 22 -2 =ixe(A) = K2 - 22 -

It follows that the general solution of the system of ordinary differential equations (3) in the L*(L*)-space has the
following form:

ah) ik (A) = B tanh(B,y) ik, (R)y

, f >0
. ’ i, (2) Y
u(,y)=
b(A) ik_(A)+ B_tanh(B_y) efirc_(/l)y’ for y<0. )
ik (L)
Let y. (y) = 1/2(1£sgny) and
i, () = Z 20 _jwu(x,y)e"“dx .
iy =22 Jutmeas
Then from eq.(4) it follows that
i(Ay) = (4 y) +i (4, y) (6)
we introduce the following notations:
| 0
u_(A) = E I (agu(x,+0) + byu(x,-0) — ho(x))emxdx
0
_ 1 ou(x,+0) ou(x,=0) idx
w_(4) T jw(al ; +by ; Iy (x))e M dx,
(7
similarly
)= 1 i iAx
u (A= E (cou(x,+0) + dgu(x,—0) — py(x))e ™ dx
0
LT au(x+0) | du(x,~0 i
)= [0 P S e
0 ®)
So
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. B2 i, (1)
)| (i, (A) - B, tanh(B, ) -——L= "D gor >0
s a ){(nc( )~ B, tanh(B, ) l-,g(x)coshz(my)} or y
dy 2 . ©)
B . B —ik_(A)y
b(/l){(nc_(l) + B_tanh(fB_y)) +—iK_(/1)cosh2(l3_y):| e , for y<O0.

Using boundary conditions (2) and taking into account egs.(4), (9) one derives

aga(A) +byb(A) = u_(A) +ho(X)

2 2 2 2
—ay[K} (l) + B la(d) n bl["—(%) +BI1p(A) _ w_ () +hAl(/l), (10)
ik, (1) iKk_(A)

Where

0 0
I _ 1 iAx I _ 1 ilx
ho(A) == _J' ho (e, Ty(2) == _J' Iy (x)e™dx

Assume that the determinant A(1) of system (10) is not zero, i.e.,

S(COR N (ORI a3 Lol N G CO

AT TE T gy MmN L (an
In view of eq (10):
1 KE(/I) + ﬁf A ~
“ =3 {bl D+ o=t (w- )+ y(2)
(12)
_ 1] +p? ; ;
D=5 {al ey @) a0 (w2 + D)
then, taking into account that
u  (A) = coa(A) +dopb(A) = po(4)
2 2 2 2
TS L CO RS o IO R L COR 5 O NN (13)

iK,(A) iKk_(A)
Where

A 1 T iAx ~ 1 K ilx
AN=— x)edx, p(A)=— x)e dx
ho() \/E_[[Po() %) ﬂgpl()
which derives the following boundary problem of Riman-Hilbert with respect to the

_- u, (A) _- u_(A)
u,(A)= () u_(A)= ) (14)

iy (1) and ii_(2) are analytical functions in the upper and lower semiplanes respectively in the vector notations this problem
takes the following form:
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i, (A)=LA)u_(A)+m(A) (15)
Where the matrix function L(x) is:
1 (An(A)  A4pQ)
L) =— (16)
A 45(1)  4p (1)
With
2 2 2 2 2 2 2 2
All()‘) — aldO K+.(//{’)+ ﬁ+ +be K—'(/l)-’_ ﬁ— =ad y+()‘) _ﬁ+ +b100 y—(;{’)_ﬁ—
ik (A) iK_(4) 7+ (A) v-()
Aj5(A) = agdy — bycy
gy QB KM+ WD -B Y- B2
A1 (A) = (aydy = biey) i, () x () (ydy = bycy) ) x )
_, KB A +B_, ) -Bi () -B2
A22 (ﬂ,) = boCl 1K+(2’) + aodl lK‘_(l) = bOCI /y+(2’) +a dl 7/_(2') .
The coordinates of the vector-function 7(%)
H() {ml (/I)J
mA) = 17
my(A) (a7
have the following form
m (l) — hAO(l) ad K—%(l)-*_ ﬁ-& +b1C K3(1)+ﬁ—2 + Clodo _bOCO hA (}l)_ﬁ (}l)
! AL | i, (A i (D) A 0
_ho), k@Bl K2+ B
ny (A«) A(ﬂ,) {bocl i, (l) + aodl Py (l) +
ady —bey ;o KDL KA B
Ay @) ix. (1) e o?
The case of f.= . = 0 was studied in the papers [6, 7].
Theorem: If the function u € L*(L?) is the solution of the L(A) = L)AL (A) (18)

boundary problem (1), then the pair of vector-functions i (1)

and i-(A) is a solution of the boundary problem of
Riman-Hilbert (15). Vice-versa, if one applies inverse
Fourier transform to the function i(4, y) = a.(4, y) +
i (A, y), which is associated with vector functions (1)
and i-(2) by the relations (7), (8), then solution of the
boundary problem (1), will be derived.

Theory of the Riman-Hilbert problem solvability is
demonstrated in the monographs [6, 8]. The essence of
this problem solution is linked to the problem of the L(A)
matrix-function factorization, i.e. to the problem of its
presentation as

Where the matrix-functions L.(4), r7l(z) are analytic in
the upper semiplane and L (1), ;=l(3) are analytic in the

lower semiplane. The diagonal matrix-function can be
presented as

19)
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Where ¢, and «, are partial indices of the given diagonal
matrix-function, which allow one to write the Fredholm
characteristics of the initial boundary problem.
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