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Abstract: High Performance Concrete (HPC) is a class of concretes that provides superior performance 
than those of conventional types. The enhanced performance characteristics of HPC are generally achieved 
by the addition of various cementitious materials and chemical and mineral admixtures to conventional 
concrete mix designs. These additives considerably influence the compressive strength and workability 
properties of HPC mixes. To avoid testing several mix proportions to generate a successful mix and also to 
simulate the behaviour of strength and workability improvement efficiently that often lead to saving in cost 
and time, it is idealistic to develop predictive models so that the performance characteristics of HPC mixes 
can be evaluated from the influencing parameters. Accordingly, the main focus of the present study is to 
propose new formulations of compressive strength and slump flow of HPC mixes for the first time in the 
literature by means of a promising variant of Genetic Programming (GP) which is known as Multi
Expression Programming (MEP). The models are developed using an experimental database including 
compressive strength and slump flow of HPC test results obtained from the previously published literature. 
The results of proposed formulations are compared with other existing models and formulas found in the 
literature. The results demonstrate that the formulas obtained by the MEP method are able to predict the 
strength and slump flow to high degree of accuracy.
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INTRODUCTION

Different factors influence the compressive
strength and workability properties of high performance 
concrete (HPC) mixes. A range of materials such as 
portland cement, silica fume, superplasticizer, fly ash, 
fine and coarse aggregates and ground-granulated
blast furnace slag and combinations of these can be
used in order to obtain concrete mix designs with 
superior performance. Using these material
considerably influence the compressive strength
and workability properties of HPC mixes. A deep
knowledge of the nature of the relationship between 
these interrelated parameters and the resulting
mix is required to provide an effective mix design 
procedure [1]. The complex behavior of strength and 
workability improvement and a need to avoid trying
several mix proportions to produce a successful
mix suggest the necessity to develop comprehensive 
mathematical models to be able to evaluate the
performance characteristics of HPC mixes with
high accuracy.

Genetic Programming (GP) [2, 3] is a developing 
subarea of evolutionary algorithms inspired from
Darwin’s evolution theory. GP may be defined
generally as a supervised machine learning technique 
that searches a program space instead of a data space 
[3]. Recently, a particular variant of GP that uses a 
linear representation of chromosomes namely, Multi
Expression Programming (MEP) have been proposed.
MEP [4] has a special ability to encode multiple
computer programs of a problem in a single
chromosome. Based on the numerical experiments
MEP approach has the ability to significantly
outperform similar techniques and can be utilized as an 
efficient alternative to the traditional Koza’s tree-based
GP [5]. Despite the significant advantages of MEP,
there has been just some little scientific effort directed 
at applying it to civil engineering tasks [6].

The main purpose of this paper is to utilize MEP
technique to obtain formulas for the determination of 
compressive strength and slump flow of HPC mixes. To 
our knowledge, this is the first time in the literature to 
utilize this approach to introduce explicit formulations
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of the performance characteristics of HPC mixes. In
order to evaluate the prediction quality, a comparison 
between the proposed formulations results, as well as 
existing models found in the literature, was conducted
considering the influencing parameters such sand
cement ratio, coarse aggregate cement ratio, water
cement ratio, percentage of silica fume and percentage 
of superplasticizer. A reliable database including
previously published compressive strength and slump
flow of HPC test results was utilized to develop the 
models.

REVIEW OF PREVIOUS STUDIES

In composite materials like HPC changes in
constituent properties of the cementitious materials
and chemical admixtures may extremely influence
the advantageous performance characteristics of the 
mix . Numerous studies have concentrated on 
assessing the performance characteristics of HPC 
mixes using computational approaches in the literature. 
Artificial Neural Networks (ANNs) [7, 8] have a
noteworthy quality of learning the relationship 
between the input and output parameters as a result of 
training with previously recorded data. ANNs have
been applied to predict the compressive strength
and slump flow of HPC mixes several times [9-12].
There has been only limited research with the 
specific objective of opening ANN models adequately 
and introducing explicit formulations of compressive 
strength and slump flow of HPC mixes by means
of them. 

Rajasekaran and Amalraj [12] presented a
Sequential Learning Approach (SLA) for single hidden 
Radial Basis Function (RBF) neuron neural networks 
proposed by Zhang and Morris [13]. Their developed 
Sequential Learning Neural Network (SLNN) model
was utilized for the prediction of strength and
workability of high performance concrete. The values 
for learning rate and gamma have been respectively 
chosen as 0.6 and 0.000001 for the architecture of their 
proposed SLNN (RBF) model. In that work two
equations were introduced based on experimental
results and by using the values of the weights obtained 
from neural network training to predict the compressive 
strength (s ) and slump flow (S) that are given as 
follows:

1W
SLNN(MPa) 8.2628e −σ = (1)

2W
SLNNS (mm) 12.2872e −= (2)

where,

2 21 2
1 2
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3

1 x xW [( 2.3357) ( 1.7148)
(2.6808) 2 4

x x(2x 1.5897) ( 1.2737) ( 1.9704) ]
30 5

= + + + +
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(4)

where, x1 sand cement ratio; x2 coarse aggregate
cement ratio; x3 water cement ratio; x4 silica fume (%);
x5 superplasticizer (%) and x1, x2,..., x5 are the five input
parameters to the model. It should be noted that the
required data used for the training and testing of the 
SLNN model described above were taken from [14] and 
have also been utilized in the present study. In this 
paper, a novel approach for the formulation of
compressive strength and slump flow of HPC mixes 
using MEP is proposed. 

GENETIC PROGRAMMING (GP)

Genetic Programming (GP) is one of the branches
of evolutionary methods that creates computer
programs to solve a problem using the principle of 
Darwinian natural selection.GP was introduced by
Koza as an extension of the genetic algorithms, in 
which programs are represented as tree structures and 
expressed in the functional programming language
LISP [2]. A comprehensive description of GP is beyond
the scope of this paper and can be found in [2, 3]. GP 
has been successfully applied to some of the civil
engineering problems [15-18].

Multi Expression Programming (MEP): Multi
Expression Programming (MEP) is a subarea of
Genetic Programming (GP) that was developed by
[4Oltean and Dumitrescu (2002)]. MEP uses linear
chromosomes for solution encoding and has a special 
ability to encode multiple solutions (computer
programs) of a problem in a single chromosome.
According to the fitness values of the individuals, the 
best of the encoded solutions is chosen to represent 
the chromosome. Comparing MEP to other GP variants 
that store a single solution in a chromosome, there are 
not increases in the complexity of the decoding 
process except on the situations where the set of
training data is not a priori known [5]. The evolutionary 
steady-state MEP algorithm starts by the creation of a 
random population of individuals. In order to evolve 
the best expression from a data file of inputs and 
outputs along a specified number of generations,



World Appl. Sci. J., 11 (11): 1458-1466, 2010

1460

MEP uses the following steps until a termination
condition is reached [19]:

• Selecting two parents by using a binary tournament 
procedure [2] and recombining them with a fixed 
crossover probability.

• Obtaining two offspring by the recombination of 
two parents.

• Mutating the offspring and replacing the worst 
individual in the current population with the best of 
them (if the offspring is better than the worst 
individual in the current population).

MEP is represented similar to the way in which C
and Pascal compilers translate mathematical
expressions into machine code [20]. The number of
MEP genes per chromosome is constant and specifies 
the length of the chromosome. A terminal (an element 
in the terminal set T) or a function symbol (an element 
in the function set F) are encoded by each gene. A gene 
that encodes a function includes pointers towards the 
function arguments. Function parameters always have 
indices of lower values than the position of that
function itself in the chromosome. The first symbol in a 
chromosome must be a terminal symbol as stated by the 
proposed representation scheme.

An example of a MEP chromosome can be seen 
below. It should be noted that numbers to the left stand 
for gene labels that do not belong to the chromosome. 
Using the set of functions F = {+, *, /} and the set of 
terminals T = {x1, x2, x3, x4}, the example is given as 
follows:

0: x1
1: x2
2: * 0, 1
3: x3
4: + 2, 3
5: x4
6: / 4, 5

The translation of MEP individuals into computer 
programs can be obtained by reading the chromosome 
top-down starting with the first position. A terminal 
symbol defines a simple expression and each of
function symbols specifies a complex expression
obtained by connecting the operands specified by the 
argument positions with the current function symbol 
[19]. In the present example, genes 0, 1, 3 and 5 encode 
simple expressions formed by a single terminal symbol. 
These expressions are:

E0 = x1,
E1 = x2,

E3 = x3,
E5 = x4,

Gene 2 indicates the operation * on the operands 
located at positions 0 and 1 of the chromosome.
Therefore gene 2 encodes the expression: 

E2 = x1*x2.

Gene 4 indicates the operation + on the operands 
located at positions 2 and 3. Therefore gene 4 encodes 
the expression:

E4 = (x1*x2) + x3.

Gene 6 indicates the operation / on the operands 
located at positions 4 and 5. Therefore gene 6 encodes 
the expression:

E6 = ((x1*x2) + x3)/ x4.

In order to choose one of these expressions
(E1,...,E6) as the chromosome representer, multiple
solutions in a single chromosome are encoded. Each of 
MEP chromosomes encodes a number of expressions 
equal to the chromosome length (the number of genes). 
Each of these expressions can be considered as a
possible solution of a problem. The fitness of each 
expression encoded in a MEP chromosome is defined 
as the fitness of the best expression encoded by that 
chromosome. For solving symbolic regression problems 
the fitness of a MEP chromosome may be computed by 
using the formula [5]:

n
i

j ji 1 , m j 1
f min E O

= =

  = − 
  
∑ (5)

where n is the number of fitness cases, Ej is the 
expected value for the fitness case j, Oj

i is the value 
returned for the jth fitness case by the ith expression 
encoded in the current chromosome and m is the
number of chromosome genes.

DATABASE

The database contains 23 compressive strength and 
slump flow of HPC test results managed by Rajaseraran 
et al. [14]. Table 1 shows the experimental database 
used for proposed models. The other cited information 
in Table 1 consists of sand (FA)/cement (C), coarse 
aggregate (CA)/cement (C), water (W)/cement (C),
silica fume content (%SF) and superplasticizer content 
(%SP) as the five input parameters to the models to
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Table 1: Database used in developing the models
Mix No. FA/C CA/C W/C SF (%) SP (%) s test (MPa) Stest (mm)
Training
1 1.88 2.84 0.45 9.99 2.0 80.00 110
2 1.60 2.40 0.40 9.99 2.0 90.08 90
3 1.80 2.68 0.45 19.98 3.0 110.08 120
4 1.30 2.12 0.35 9.99 2.0 110.08 80
5 0.96 1.72 0.30 5.01 2.0 130.08 50
6 1.02 1.80 0.30 15.03 2.5 120.00 60
7 1.08 1.92 0.30 15.03 2.5 130.08 70
8 0.78 1.52 0.25 9.99 2.0 140.00 40
9 1.64 2.44 0.35 12.00 2.0 80.00 100
10 1.70 2.56 0.35 15.99 2.5 90.08 120
11 1.80 2.68 0.35 20.01 3.0 90.08 130
12 1.90 2.84 0.35 24.00 3.5 90.08 150
13 1.98 3.00 0.35 27.99 4.0 90.08 170
14 1.38 2.28 0.35 7.50 2.0 90.08 80
Testing
15 1.64 2.48 0.40 9.99 2.0 80 100
16 1.76 2.64 0.43 15.00 2.5 100 110
17 1.92 2.888 0.45 9.99 2.0 80 120
18 1.36 2.20 0.36 9.99 2.0 100 80
19 1.44 2.36 0.38 15.00 2.5 100 90
20 1.54 2.52 0.46 20.01 3.0 140 110
21 1.16 2.08 0.32 9.99 2.0 110.08 70
22 1.10 1.96 0.30 5.01 2.0 100 60
23 1.24 2.20 0.34 15.00 2.5 120 90

Table 2: The variables used in model development
Parameters Range Normalization value Code
Inputs
Sand cement ratio FA/C 0.78-1.98 2 x1

Coarse aggregate cement ratio  CA/C 1.52-3 4 x2

Water cement ratio  W/C 0.25-0.46 0.5 x3

Silica fume SF (%) 5.01-27.99 30 x4

Superplasticizer (%) 2-4 5 x5

Outputs
Compressive strength s  (MPa) 80-140 160 -
Slump flow S (mm) 40-170 200 -

predict the compressive strength (s)and slump flow (S)
of HPC mixes as the outputs. It is noteworthy that the 
input and output parameters entering the models have 
been normalized between 0 and 1 before the learning 
process. The range of the samples, normalization values 
and the format of the input data used in this study are 
given in Table 2.

MODEL DEVELOPMENT USING MEP MODEL

The main goal is to obtain the explicit formulations 
of the compressive strength and slump flow of HPC 
mixes as functions of variables given as follows:

( ),s f FA/C, CA/C, W/C, SF, SP σ =

The five parameters are used for the MEP models 
as the input variables. Two MEP models for single
output have been separately used, one for strength and 
the other for the slump flow. In order to evaluate the 
capabilities of the MEP model, the correlation
coefficient (R), Mean Squared Error (MSE) and Mean
Absolute Error (MAE) are used as the criteria between 
the actual and predicted values. Various parameters 
are involved in MEP predictive algorithm such as
population size, chromosome length, number of
generations, tournament size and other parameters that
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Table 3: Parameter settings for MEP
Settings
---------------------------------------------------

Parameter s 1, S1 s 1, S1

Function set +,-, *, /, exp, sin, cos +,-, *, /
Population size 250-500 250-500
Chromosome length 50 genes 50 genes
Number of generations 250 250
Crossover probability 0.5, 0.9 0.5, 0.9
Crossover type Uniform Uniform
Mutation probability 0.01 0.01
Terminal set Problem inputs Problem inputs

are shown in Table 3. The parameter selection will
affect the model generalization capability of MEP.
They were selected based on some previously
suggested values [6] and also after trial and error
approach. Four formulations of compressive strength 
and slump flow, two formulas for each of them, have 
been considered using two different function sets for 
runs. The first function set consists of nearly all
functions and the latter includes just addition,
subtraction, division and multiplication in order to
obtain short and very simple formulas. Subsequently, 
the results obtained from these equations were
compared with each other, as well as the results
obtained by other researcher. For the analysis, source 
code of MEP [21] in C++ was modified by the authors 
to be utilizable for the available problems. For the
prediction of compressive strength and slump flow of 
HPC the first 14 values of Table 1 are taken for training 
the MEP algorithm and the next 9 values were used for 
testing the generalization capability of MEP based
models. The details of the compressive strength and 
slump flow predictive models are highlighted in next 
sections.

Explicit formulation of compressive strength and
analysis using MEP model: Formulation of
compressive strength in functional form in terms of the 
independent variables, sand cement ratio (FA/C = x1), 
coarse aggregate cement ratio (CA/C = x2), water
cement ratio (W/C = x3), percentage of silica fume
(%SF = x4) and percentage of superplasticizer (%SP = 
x5) as presented in Table 1, for the best result by the 
MEP algorithm are given in Eq. (6) and Eq. (7) for two 
different function sets.

2
1 5

1 3
2

320 x x
(MPa) cos(cos 2x )

x 4 5
 σ = − − 
 

(6)

1 2
2 5 1 2 3

x x 2
(MPa) 80 (x -  x-   x/2+ 4 x  +  2

10
− + σ =  
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(7)

Fig. 1: Results of compressive strength prediction for 
Eq. (6)

Fig. 2: Results of compressive strength prediction for 
Eq. (7)

The comparison of MEP prediction and actual
compressive strength of HPC for Eq. (6) is shown in 
Fig. 1. It can be seen from Fig. 1 that Eq. (6) generated 
by MEP model yielded high R values for training and 
testing data equal to 0.9663 and 0.924, respectively. 
Figure 2 shows the relevant results obtained by Eq. (7). 
It can be observed from this figure that Eq. (7) yielded 
R values for training and testing data equal to 0.9465 
and 0.9083, respectively. It can be concluded from
these figures that Eq. (6) has better performance than 
Eq. (7) for both of training and testing sets.

Explicit formulation of slump flow and analysis
using MEP model: Similar to compressive strength,
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Fig. 3: Results of slump flow prediction for Eq. (8)

Fig. 4: Results of slump flow prediction for Eq. (9)

for the slump flow five parameters are considered in the 
formulation process, namely FA/C (x1), CA/C (x2),
W/C (x3), %SF (x4) and %SP (x5). These values have 
been chosen from

Table 1 as inputs for the MEP model. The
prediction equations for the best result by the MEP 
algorithm are given in Eq. (8) and Eq. (9) for the
aforementioned function sets.

2

2 4 1
1 1/4x

3 5

50x ( x 1 5 x )
S(mm)

15e 30x x
+

=
+ +

(8)

1 2
2

3 3 5 2

50 0xx
S(mm)

40x 8x x 5x
=

− +
(9)

The comparison of MEP prediction and actual
slump flow of HPC for Eq. (8) is shown in Fig. 3. It can 

be seen from Fig. 3 that Eq. (8) yielded high R values
for training and testing data equal to 0.992 and 0.9761, 
respectively. Fig. 4 demonstrates that Eq. (9) has
produced results with very high R values for training 
and testing data equal to 0.9965 and 0.9699,
respectively. It can be seen from these figures that 
while Eq. (8) outperforms Eq. (9) on the testing data, 
better results are obtained by Eq. (9) for the training set.

DISCUSSION

Four formulations of compressive strength and 
slump flow of HPC in functional form in terms of
FA/C, CA/C, W/C, %SF and %SP were obtained by 
using MEP and given in Eqs. (6-9). As mentioned 
previously, R, MSE and MAE are selected as the target 
statistical parameters to evaluate the performance of the 
models. Figure 5 and 6 represent the results for all 
element test data for compressive strength and slump 
flow, respectively. Statistical performance of MEP
based formulations, as well as SLNN model [12], in 
terms of their prediction capabilities are summarized in 
Table 4 and 5. The results for compressive strength, 
presented in Table 4, show that the best performance is 
achieved by Eq. (6) for both of the training (R =
0.9663, MSE=28.273, MAE = 4.403) and testing data 
(R = 0.924, MSE=74.545, MAE = 7.038). Comparing 
the results of the SLNN based formula and Eq. (7) for 
the training set, it can be seen that the former performs 
superior than the latter. It can be observed from Table 4 
that both of the formulae obtained by MEP approach 
outperform the SLNN formulation on the testing data 
set. The results for all element tests data demonstrate
that Eq. (6) has better performance followed by SLNN 
and Eq. (7).

Considering the slump flow, it can be concluded 
from Table 5 that while Eq. (9) and SLNN formula
yielded R values equal to 0.9965 for the training data 
set, SLNN slightly outperforms the other regarding its 
lower MSE and MAE values. In this case, Eq. (8) has 
performed poorer than the other models. As can be 
observed in Table 5, SLNN based formula with R, MSE 
and MAE values equal to 0.9795, 18.882 and 3.6533 
has produced better results on the testing data set 
followed by Eq. (8) and Eq. (9). Considering the all 
element tests data, it can be seen that the SLNN model 
has better performance followed by Eq. (9) and Eq. (8). 
It should be noted that in spite of the better performance 
of SLNN models in some of the aforementioned
situations, the MEP based prediction equations are
really short, very simple and can be used facilitatory.
Table 6 shows a comparative analysis of results of the 
proposed MEP formulations and the results obtained by
SLNN model including compressive strength and slump 
flow actual experimental values. 
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CONCLUSIONS

This paper proposes a novel approach for the
prediction of compressive strength and slump flow of 
HPC mixes using a variant of GP namely, MEP. Four 
formulations of compressive strength and slump flow, 
two formulas for each of them, have been obtained by 
means of MEP and considering two different function

sets. A reliable database including previously published
compressive strength and slump flow of HPC test
results was used for training and testing the prediction
models. The MEP based formulations results were
compared with the experimental results and the existing 
model proposed in the literature namely, SLNN (RBF). 

Based on the values of performance measures for 
the models it can be observed that the proposed MEP 

Fig. 5: Compressive strength relative comparison for all element tests data

Fig. 6: Slump flow relative comparison for all element tests data

Table 4: Statistical performance of models for compressive strength prediction

Training Testing All elements 
--------------------------------------------- -------------------------------------------- -----------------------------------------

Models R MSE MAE R MSE MAE R MSE MAE

MEP (Eq. (6)) 0.9663 28.273 4.403 0.9240 74.545 7.038 0.9441 46.379 5.434
MEP (Eq. (7)) 0.9465 41.886 5.521 0.9083 69.180 6.861 0.9229 52.566 6.046
SLNN 0.9546 34.126 4.651 0.8977 61.212 6.898 0.9351 44.725 5.530
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Table 5: Statistical performance of models for slump flow prediction

Training Testing All element tests data
--------------------------------------------- --------------------------------------------- -----------------------------------------

Models R MSE MAE R MSE MAE R MSE MAE

MEP (Eq.  (8)) 0.992 28.311 4.427 0.9781 24.974 4.162 0.9893 26.998 4.323
MEP (Eq. (9)) 0.9965 17.780 3.455 0.9699 61.920 6.692 0.9903 35.052 4.722
SLNN 0.9965 9.129 2.471 0.9795 18.882 3.653 0.9936 12.945 2.934

Table 6: Comparative analysis of proposed MEP based formulae with experimental and SLNN results

Mix σTest σ1 Eq. (6) σ2 Eq. (7) σSLNN STest σ1 Eq. (8) S2 Eq. (9) SSLNN

No. (MPa) (MPa) (MPa) (MPa) (mm) (mm) (mm) (mm)

Training
1 80.00 80.74 0.991 83.11 0.963 76.96 1.040 110 108.44 1.014 106.78 1.030 113.40 0.970
2 90.08 92.69 0.972 98.56 0.914 91.84 0.981 90 89.980 1.000 88.89 1.013 88.80 1.014
3 110.08 107.44 1.025 114.24 0.964 105.44 1.044 120 121.50 0.988 117.09 1.025 119.40 1.005
4 110.08 102.43 1.075 108.32 1.016 106.56 1.033 80 74.460 1.074 72.53 1.103 73.40 1.090
5 130.08 124.49 1.045 129.63 1.004 120.64 1.078 50 43.860 1.140 52.25 0.957 48.20 1.037
6 120.00 129.38 0.927 127.21 0.943 132.64 0.905 60 68.200 0.880 61.20 0.980 63.20 0.949
7 130.08 119.43 1.089 117.73 1.105 127.04 1.024 70 73.590 0.951 66.46 1.053 69.60 1.006
8 140.00 134.30 1.042 134.21 1.043 135.68 1.032 40 46.520 0.860 43.59 0.918 45.00 0.889
9 80.00 82.67 0.968 79.19 1.010 88.96 0.899 100 101.24 0.988 97.13 1.030 99.60 1.004
10 90.08 84.82 1.062 80.20 1.123 91.36 0.986 120 114.34 1.050 109.90 1.092 116.80 1.027
11 90.08 87.35 1.031 82.24 1.095 91.46 0.985 130 129.05 1.007 126.95 1.024 132.80 0.979
12 90.08 89.31 1.009 83.96 1.073 91.65 0.983 150 144.73 1.036 146.63 1.023 152.00 0.987
13 90.08 91.93 0.980 87.05 1.035 88.72 1.015 170 159.50 1.066 166.85 1.019 167.00 1.018
14 90.08 93.48 0.964 96.39 0.935 98.24 0.917 80 74.720 1.071 79.45 1.007 79.00 1.013

Testing
15 80.00 88.83 0.901 92.95 0.861 88.96 0.899 100 93.480 1.070 92.44 1.082 93.80 1.066
16 100.00 95.56 1.046 100.35 0.996 90.40 1.106 110 110.57 0.995 106.57 1.032 112.20 0.980
17 80.00 78.59 1.018 79.65 1.004 74.88 1.068 120 111.19 1.079 109.84 1.092 117.00 1.026
18 100.00 99.17 1.008 104.79 0.954 103.04 0.970 80 78.110 1.024 76.17 1.050 77.60 1.031
19 100.00 104.62 0.956 106.27 0.941 106.40 0.940 90 93.970 0.958 87.59 1.028 94.20 0.955
20 140.00 122.08 1.147 127.64 1.097 126.40 1.108 110 106.58 1.032 97.21 1.132 102.20 1.076
21 110.08 102.01 1.079 106.65 1.032 111.84 0.984 70 69.770 1.003 66.73 1.049 70.40 0.994
22 100.00 105.90 0.944 109.60 0.912 110.08 0.908 60 53.390 1.124 63.41 0.946 59.00 1.017
23 120.00 108.68 1.104 108.35 1.108 116.48 1.030 90 84.580 1.064 76.63 1.174 84.32 1.067

models are able to predict the target values to an
acceptable degree of accuracy. The results of testing 
data demonstrated that for the prediction of
compressive strength both of the formulae evolved
by MEP outperform the proposed formulation
result of SLNN. Considering the relevant results for 
the explicit formulation of slump flow it can be
observed that SLNN has produced slightly better 
results than the MEP based formulas. When the
performance of the MEP based prediction equations 
is taken into consideration it can be seen that in 
addition to their considerable accuracy they are
quite short and very simple and seem to be more 

practical for use compared to the prediction 
equations produced by SLNN. However, this
investigation revealed that MEP is very promising
approach that can be utilized in order to produce
explicit formulations to be able to capture the
underlying relationship between the different
interrelated input and output data for many of
civil engineering tasks.
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