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Abstract: A characterization theorem based on first moment is given for the subfamily of distributions 
generated by the Gaussian hypergeometric function. The theorem is then applied to some discrete
probability distributions, providing specific characterization theorems for each of them. 
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INTRODUCTION

Characterization theorems in statistics are of great 
interest and widely appreciated for their role in
clarifying the structure of the families of probability 
distributions. They form an essential tool of statistical 
inference and their role have as a natural, logical and 
effective starting point for constructing goodness-of-fit
tests. The most of papers since 1960 on
characterizations of statistical distributions deal with 
exponential and geometric distributions because the
associated mathematics is often simple. The survey by 
Kotz [1] covers a substantial number of results in the 
field. Sampson [2] considers certain results on
characterizing exponential family distributions through 
their mean and moment generating functions. He [2] 
also gives necessary and sufficient conditions so that a 
function can be the mean value function of an
exponential family distribution. Gokhale [3] gives the 
mean-variance result by proving that within power
series distributions, µ2 = m (1-mc) if and only if X has a 
binomial, Poisson, or negative binomial distribution
according to whether c is a positive integer, zero, or 
negative integer, respectively. Consul [4] shows that 
discrete probability distributions, with mass functions 
defined as functions of their mean can be characterized 
by their variance only. Consul [4] also considers
characterization theorems when variance is a linear,
quadratic and cubic function of mean. Letac [5] also 
characterizes several distributions by considering
variance as a function of mean. Consul [6] proves a 
general characterization theorem based on conditional
expectation for the exponential class of distributions. 
Discrete distributions whose probability generating
function is given by the Gaussian hypergeometric
function,
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have been widely studied in the field of Mathematical 
Statistics [7]. Most well-known discrete distributions, 
such as the Binomial, Negative binomial, Geometric,
Hypergeometric, Poisson, Beta-Binomial, Crow-
Bardwell or hyper-Poisson, Waring, Yule, etc (a
detailed table appears in Dacey [8]), belong to this 
family. Rodríguez-Avi et al. [9] consider the problem 
of the estimation of the parameters in the context of the 
subfamily of distributions generated under the
assumption that λ =  1, when the Gauss summation 
theorem provides a result for computing the exact value 
of probabilities and moments. 

In   this   article   a   characterization  theorem
based on the first moment is presented for the
subfamily of distributions generated by Gaussian
hypergeometric function when λ = 1. The theorem is 
then applied to some discrete probability distributions, 
providing specific  characterization  theorems  for  each 
of them. 

GAUSSIAN HYPERGEOMETRIC 
DISTRIBUTIONS

The dis crete  version of  the Pearson system is 
given by
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G(r)f L(r)f 0, r 0,1,2,....r 1 r− = =+ , (2)

where fr = Pr [X = r] is the probability mass function 
and L and G are given functions.
If we consider quadratic polynomials L and G given by

L(r) ( r)( r)= α + β + λ

G(r) ( r)(r 1)= γ + +

in which α, β, γ and λ are real numbers that provide a 
probability  mass  function (pmf), then the solution of 
Eq. (2) is:
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Distributions generated in this manner are named 
Gaussian hypergeometric distributions (GHD),
[7,10,11] and are denoted by Kemp and Kemp  [12] as 
GHD (α, β, γ, λ). In order to obtain the values of Eq. 
(3), summation results of Eq. (1) are necessary. In this 
sense the only known general result is the Gauss’s 
summation theorem, when λ = 1.

( ) ( ) ( )
F , ; ;1 ,

( ) ( )2 1
Γ γ − α − β Γ γ

α β γ =
Γ γ − α Γ γ − β

 when γ>α+β

In this article we shall characterize the
triparametric family of distributions, GHD (α, β, γ,  1)
through first moment. This family includes some well-
known distributions, such as the Hypergeometric,
Negative or inverse hypergeometric, Beta-Pascal,
Pólya, Beta-Binomial, Waring, Generalized Waring,
Yule, etc. The general case 0<λ≤1 is under
consideration.

THE CHARACTERIZATION THEOREM

Theorem  1: A non-negative discrete random variable 
X  defined  over  a  given  domain,  belongs  to  the 
GHD (α, β, γ, 1) with probability mass function (pmf),
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if and only if
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where ( )f F , ; ;11
o 2 1= α β γ− , 1′µ  denotes first moment

about zero, α, β, γ are real numbers that provide a pmf.
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Hence, we can get the following equivalent set of 
equations (for similar results see also [13, 14, 15]):

( r)(r 1)f ( r)( r)f , r 0,1,2,....r 1 rγ + + = α + β + =+ , (6)

Eq. (6) is a discrete version of the Pearson system 
(2) and its solution gives fr.
The converse is straightforward.

Special Cases 1: Putting α = -n, β = -Np, γ = N-Np-n+1
in Theorem 1; we have

Corollary 3.1: A nonnegative discrete random variable 
X has hypergeometric distribution with pmf
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and max(0,n N N ) r min(n,N )p p− + ≤ ≤

if and only if
nN

N
p

1′µ = (3.1)

2. Putting α = -n, β = v+1, γ = -w-n, in Theorem 1; 
we have

Corollary 3.2: A nonnegative discrete random variable 
X has negative or inverse hypergeometric distribution 
with pmf
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3. Putting α = -n, β = w/c, γ = -b/c-n+1, in Theorem 
1; we have

Corollary 3.3: A nonnegative discrete random variable 
X has Pólya distribution with pmf
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4. Putting α = -n, β = a, γ = -b-n+1, in Theorem 1; 
we have

Corollary 3.4: A nonnegative discrete random variable 
X has beta-binomial distribution with pmf
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when a = b = 1, the out-come is a discrete rectangular 
distribution.
5. Putting α = a, β = k, γ = k+ρ+a, in Theorem 1; we 

have

Corollary 3.5: A nonnegative discrete random variable 
X has Generalized Waring (beta-Pascal distribution)
distribution with pmf
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6. Putting a = 1 in corollary 3.5; corollary 3.6 results.

Corollary 3.6: A nonnegative discrete random variable 
X has Waring distribution with pmf
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7. Putting a = k = 1, in corollary 3.5; corollary 3.7
results.

Corollary 3.7: A nonnegative discrete random variable 
X has Yule distribution with pmf
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8. Putting α = a-1, β = 1, γ = a+b,  in  Theorem 1; 
we have

Corollary 3.8: A discrete random variable X has
geometric compound distribution with pmf
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9. Putting α = n-λ+1, β = 1, γ = λ+1, in Theorem 1; 
we have

Corollary 3.9: A nonnegative discrete random variable 
X has Factorial distribution with pmf 
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=
λ − − − λ λ +
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, for λ> (n/2) +1 (3.9)
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