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Abstract: Tn this paper, we study in particular developable surfaces, a special type of ruled surface in the special

three-dimensional ¢— Ricci symmetric para-Sasakian manifold P. We characterize biharmonic curves in terms
of their curvature and torsion and we prove that all of biharmonic curves are helices in the special three-

dimensional ¢—Ricel symmetric para-Sasakian manifold P. Moreover, we find out explicit parametric equations
of tangent developable of biharmonic curve in the special three-dimensional ¢-Ricci symmetric para-Sasakian

manifold P.
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INTRODUCTION

The geometry of curves and surfaces has long
captivated the interests of mathematicians, from the
ancient Greeks through to the era of Isaac Newton
(1643-1727) and the nvention of the calculus. During the
18th century, through the use of differential calculus, the
study of geometry evolved into differential geometry and
it is in this context that the reader is presented with the
topic of this report, ruled surfaces.

Ruled especially  developable
surfaces are well-known and widely used in computer
aided design and manufacture. Since these fields
apply B-spline or NURBS de facto
standard description methods, it 18 lughly desired to use
these methods to construct ruled and developable
surfaces from any type of data. These data can be
scattered points or given lines or a set of tangent planes,
as well. Since these special surfaces possess a wide range

surfaces and

surfaces as

of applications, e.g. from ship hulls to sheet metal formimng
processes, one can find several algorithms solving this
problem, [1.2].

Tt is well known that developable surfaces play an
important role in design in several branches of industry,
such as naval and textile. Even architectural structures
have been designed using developable surfaces. Tn these
industries surfaces are designed which mimic properties
of the materials that are used in production, which are

intended to be deformed from plane sheets of metal or
cloth just by folding, cutting or rolling, but not stretching.
This sort of industrial procedures are less expensive or do
not alter the properties of the material an therefore
developable surfaces are favoured.

The aim of this paper 1s to study tangent developable
of biharmonic curve in the special three-dimensional
¢—Ricel symmetric para-Sasakian manifold P.

Let @ @ (M,g)~(N,h) be a smooth map between
Riemanman mamifolds with M compact. Then ¢ 1s called
biharmonic if it is an extremal of the functional

Ex(0)-3f e ¥,

Where t(¢) denotes the tension field of the map ¢ and v
is the volume form on M, [3-11]. Clearly every harmonic
map 18 btharmonic (see [8] for a background on harmonic
maps). If we set

Eifo)= f, o .

to be the energy of ¢, then we recall the first variation
formula

a
Where: EEI(%) ‘s=0=*jM<T(§D),v> v

_% -1
=g F((p m)
18 an arbitrary variation of @ = ¢, If v 1s taken to be in

the direction of t(¢), then
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2 R0l (o) =~ (o).

Now take an arbitrary variation of E,(¢) in the

direction _ dg , we have
w= =0
ot
8 9%
—E o= ——F -
5t (‘Pt) lr=0 ) 1(¢’s,t) |s,r=0

=~ {To(x(0))w)r.

Where J, is the Jacobi operator corresponding to the
second variation of Z,(¢). The Euler--Lagrange equations
for a biharmonic map are therefore given by the negative
of the Jacobi operator acting on the tension field:

T, (p)=—Tr, (V"’ )2 T(p)- TrgRN (r(go),dgo) dp=0. (1)

Here, our convention for the curvature is

R(X.F)Z =V VyZ =VyViZ = Vi oF
and

2
(V‘P)X,Yv - Vg (VEr)-ve 0,

With V7’ representing the conmnection in the pull-back
bundle ¢ '(TA) and ¥ the Levi-Civita connection on M
More generally, in the case when 3 is no longer compact,
we call a smooth map ¢ biharmonic if 1t satisfies (1.1),
[12-15].

In this paper, we study in particular developable
surfaces, a special type of ruled surface in the special
three-dimensional ¢ — Ricci symmetric para-Sasakian
manifold P. We characterize biharmonic curves m terms of
their curvature and torsion and we prove that all of
biharmonic curves are helices in the special three-
dimensional ¢ — Riccl symmetric para-Sasakian mamfold
P. Moreover, we find out explicit parametric equations of
tangent developable of biharmonic curve in the special
three-dimensional ¢ — Ricci symmetric para-Sasakian
manifold P.

Preliminaries: An n-dimensional differentiable manifold
M is said to admit an almost para-contact Riemannian
structure (¢, £ 1, g), where ¢pis a (1,1) tensor field, {is a
vector field, 7715 a 1-form and g 1s a Riemanman metric on
M such that

¢S =0.n(5)=Lg(X.5)=n(X), (2.1)

$P(X)=X —n(X)E, (2.2)
g($X.97 )= g(X.T)—n(X (7)), (2.3)
For any vector fields X, ¥ on M.
In addition, if (¢, £ 1, g), satisfy the equations
dn=0Vy&=¢x, (2.4)
(V@) =—g(X.I)g-n(¥)
XX m(P)E x.¥ ey (M), (2.5)

Then M is called a para-Sasakian manifold or, briefly

a P- Sasakian manifold. Tn particular, a P- Sasakian

manifold A 1s called a special para-Sasakian manifold or

briefly a SP- Sasalaan mamfold if M admits a 1-form 71
satisfying

(Vym¥ = —g{X.7)+n(X m(T). (2.6)

Tt is known [16-17] that in a P-Sasakian manifold the
following relations hold:

S(X.L)=-(n-1m(X)
0f =-(n-1).
R(X.Y)E=n(X )Y -n(¥)X,
R(é,X)Y=T,‘(Y)X—g(X,Y)§,
R(EX)E=X-n(X )&,
M(R(X.T)Z)=1(X)e(X.2) 1(X)g(r.2).
S(pX,9Y)=S(X.¥)+ (n-1)n (X m(¥),
For any vector fields X, ¥, Z on M.

A para-Sasakian manifold is said to be Binstein if the
Ricci tensor A is of the form

ST = Aglx 1)
Where A is a constant.

Special Three-dimensional $-Ricci Symmetric Para-
sasakian Manifold P
Definition 3.1: A para-Sasakian mamfold A7 1s said to be
locally ¢-symmetric if

¢* ((VyR)X.F)Z)=0,

For all vector fields X, ¥, Z, I orthogonal to & This
notion was introduced by Takahashi [16], for a Sasakian
manifold.
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Definition 3.2: A para-Sasakian manifold M is said to be
¢-symmetric if

¢ (VyR)(X.F)Z)=0,

For all vector fields X, ¥, Z, W onAf

Definition 3.3: A para-Sasakian manifold M 1s said to be
¢-Ricei symmetric if the Ricei operator satisfies

9*((ViONT))=0.

For all vector fields X and ¥ on M and S(X,Y) = g(QX, ¥).
If X, Y are orthogonal to &, then the manifold is said to
be locally ¢-Ricei symmetric.

We consider the three-dimensional manifold
P={(x\x'x) €R7: (' X7 x7) # (0,0,0)}

Where (x'x°.x",) are the standard coordinates in R®. We
choose the vector fields

e = exl %, e, = exl [8263} e; = ,il
ax o ax (3.1
are linearly independent at each point of P.

Let g be the Riemanmian metric defined by
gle,e)=gle,e,=gley, &) =1, (3.2)
8e, &) = gle, &, = g(e, . €) =0,

Let 1 be the 1-form defined by
n(Z)= g(Z,e3)for any Z € x(P)

Let be the (1,1) tensor field defined by
Ple) = e, le;) = e, dle;)=0. (3.3

Then using the linearity of and g we have
ne;) =1 (3.4)
P(2) = Z - 7 De, (3.5)
g(QZ.¢W )= g(Z.W )-n(ZnW ). (3.6)

Forany Z, W € y(P).. Thus for e, = £, (¢,& n,g) defines
an almost para-contact metric structure on P.

Let V be the Levi-Civita connection with respect to g.
Then, we have

e.e: = =0, [e,e:] = e, [ere:] = g,

The Riemanmean connection V of the metric g 1s given
by
2g(V¥.Z)= Xg(V.Z)+¥e(Z,X )- Zg(X.T)
~8(X.[1.2])-g(T.[X.Z])+g(Z.[X.T]).

Which is known as Koszul's formula.

Taking e, = & and using the Koszul's formula, we
obtain
Velel :—e3,Vele2 =0, Vele3 =e
Vv =0, V =—e3,V =
e, €174 e, €27 7€3: Ve, €37 €y 3.7)

VES e = 0, Ves €y = 0, V9393 =0.

Moreover we put
Ry :R(eiaej)eka R :R(enejseksei ),

Where the indices 4, j, k and [ take the values 1,2 and 3.

Ry =-e1, Riy=-e., Ry =gy,
And

Ry =R =Ry =1 (3.8)
Biharmonic Curves in the Special Three-dimensional
¢—Ricci Symmetric Para-sasakian Manifold P:

Biharmonic equation for the curve y reduces to

V3T -R(T,V{T)T =0, (4.1)
that is, ¥ is called a biharmonic curve if it is a solution of
the equation (4.1).

Letus consider biharmonicity of curves in the special
three-dimensional ¢-Ricci symmetric para-Sasakian
manifold P. Let {T.N.P} be the Frenet frame field along .

Then, the Frenet frame satisfies the following Frenet—
Serret equations:

VT = &N,
VyN=—«T+7B, (4.2)
VB =-1TN,
Where k is the curvature of v and v its torsion and
g(T,T)=1,g(N,N)=1,g(B,B) =1,
g(T,N) =g (T,B) = g(N,B) =0
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With respect to the orthonormal basis {e,.e,.e;} we
can write
T =11e +T,e, + Izes,
N =Ne; + Nye;, + N3eq,
B=TxN = Be, + Bye, + Bse;.

(4.3)

Theorem 4.1: ¥ : I ~ P 13 a biharmonic curve if and only if

k= constant # 0,
F+o=1,

=0 (4.4)
Proof: Using (4.1) and Frenet formulas (4.2), we have (4.4).
Theorem 4.2: All of biharmonic curves in the special
¢—Ricel

manifold P are helices.

three-dimensional symmetric para-Sasakian

Tangent Developable of Biharmonic Curve in the Special
Three-dimensional ¢-Ricci Symmetric Para-sasakian
Manifold P: Ruled surfaces are swept out by the motion
of a straight line in space. More formally, the image of the

map (5(%5) - I xR — p defined by

(3(%5)(3,14) = '}’(S)+ u5(s), secl,ucR

18 called a ruled surface in P where y: 7 -P, 8: I - P\ {0}
are smooth mappings and [ is an open interval or a unit
circle §'.

We call y the base curve and 8 the director curve.
The straight lines u ~ ¥ (5) + ud(s) are called rulings.

Note that we allow our ruled surfaces to possess
singular points, that is points at which the partial
derivatives of & (r:6) are linearly mdepedent, 1.e. which

satisfy
ég(s,u)x CA)M (S,H) =0

(¥ (s)+ 8 (5))x8(s)=0

= ’y’(s)x S(s)+ u5'(s)>< d(s)=0.

O(%ﬂf') (su)=7y(s)+ wy (s)..

We now consider a special type of ruled surface,
which has been studied for over a century, the
developable surface. Informally, these are surfaces which
can be attened onte a plane without distortion, so are a
transformation (e.g. folding or bending) of a plane in P.
Tt is this fundamental property which has long ensured
their useful application in engineering and manufacturing.
More recently, thewr use has spread to the computer
sciences, in computer-aided design; their isometric
properties make them ideal primitives for texture mapping.

Definition 5.1: 4 smooth surface é(?’ 5) is called a

developable surface if its Gaussian curvature K vanishes
everywhere on the surface.

Proposition 5.2: A4 ruled surface is a developable surface
[474:
(5.1)

(’)’f(s)x 3(5))>< 5’(5) =0

We can give a geometric interpretation of
Proposition 5.2 by computing the Gaussian curvature at

a regular pomt. Since

O,=y +u8",0,8=5,0,=0, (5.2)

computations of the coeffecients of the second

fundamental form give:

B (5.3)

Thefore, at regular points, the Gaussian curvature of
a developable surface 1s zero, which 1s consistent with
The tangent developable of ¥ is a ruled surface

5.4

The tangent developable is the envelope of the family of osculating planes along y, where the osculating plane at

¥(s) is the plane generated by the tangent vector 1'(s) and the principal normal N(s).

Theorem 5.3: Let y: I ~P be a unit speed biharmonic curve in the special three-dimensional ¢—-Ricci symmetric para-
Sasakian manifold P. Then, the parametric equations for tangent developable of y are
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xl(s,u) = —scos(p— ucosp+ ),

. 3 2 .2 2 .2
- o |yt - A\/K‘ —
xz(s,u) =(, - __SInp  icospr 1([75m i + cosgo] coslism id s+C

2 . 4 : .
K —sin'p sing sin ¢

) 2 ) ) 2_ .2
N . \IK' - o R N
+ f_ism(PJrcosqo sin _751”3+C )+ usinge "“**?| sin %MHCPHC +cos _751”3+C ,
sing in @ sing sing
.3 2 .2 2 .2 2 .2
- Je& - NI K-
xS(S,u)=C37%e Smsmcl(fcosgocos _75m§03+C + _75m§03+C sin _7SIHCP3+C b
k%~ gintp sing sing sing
, 2 .2
o singoeiscosmcl sin| Y5 SP L o)
sin ¢ 55)

Where C, C,, C,, C, are constants of integration

Proof: Suppose that ¢ : =P be a unit speed non-geodesic curve in the special three-dimensional ¢-Ricei symmetric
para-Sasalcian manifold P. Since ¥ is biharmonic, ¥ is a helix. So, without loss of generality, we take the axis of y is parallel
to the vector e,. Then,

g(T,e;)= T, = cosg, (5.6)
Where ¢ is constant angle.
The tangent vector can be written in the following form

T = 11e; + Then + Ties. (5.7)

On the other hand the tangent vector T is a unit vector, so the following condition is satisfied

) le +T22 =170052§0. (58)
Noting that ¢,4%p + gjn%p =1, We have

le + TZZ = sinZGP- (59)

The general solution of (5.9) can be written in the following form
T, = singcos j, (5.10)
T, =singsin i,
Where ¢ 1s an arbitrary function of s
So, substituting the components T, T, and T} in the equation (5.7), we have the following equation
T = smecos (e) + SINQSIN e, + coses. (5113

Since| VT |= &, we obtain

[z o (5.12)
—NK 7sn@ e
sing
Where C c R.

Thus (5.11) and (5.12), imply

Jx? - gin4 f 22 (5.13)
Tsinwcos[](_mos+c e1+sinq)sin[wos+c €, + Cos Peg.
SITL@ s g
Using (3.1) 1 (5.13), we obtain
1 ’ 2.2 ’ 2.2
T = (—cos ,sin pe’ Sin[ws+c +COS[W3+C , (53.14)
sin e sin e

) 1428
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From third component of T, we have
!
——=—cos{.

ds
x! [S)=—Scosgp+ .

By direct calculations we have

2 2 .z fz :
dx . —scosfp+ S |, K™ —gin K" —sgin

—— =gnpe w5 sin _7@3+C + cos _72';03+C .
sin @ sin @

3

2 2003
ox ; —5og i+ O K™ —gin
d—=Clsmr;Je PO o YE SR

"

Moreover, above equations, imply

.3 2 . 2 .2

= o \}K = K=

xz(s')zcz_zslni@e HEgEE 1( .75m2¢+c05¢ cos 73”1@34_0
i —sin4f;ﬂ sing sing

2z soe ) 2 o ]

\J —sin : \JK —gin

+ —_7tp+cosrp sin _7@3+C
sin @ sin @

il

. 3 E Fi_
(s)=Cy- =0 — ?_, SO0 cospeos Bk it - Slnz(’DS+C

2 .
k° —sinp anp
{ 2 s S
K™ - 2 K e
+ _7smz¢s+0 sin _7smz¢s+0 ).
sin @ sin @

So, substituting (5.14), (5.15), (5.16) and (5.17) in (5.4), we have (5.5).

If we use Mathematica in Theorem 5.3 for different constant, vields

1429
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pg 05 101520
R masdnakaili]

Corollary S.4: Let y: I ~ F be qunit speed non-geodesic curve. Then, the parametric equations of yin terms of tangent
developable of v are

xl[s) =—zcosp+ O,

.3 7. 2 7. 7. 2 7.
<2 (s)= Cy—— S0 _ 5050+ ([Lsm@ . COS(P}OS [LSIHZ‘P - c} [_Lsm@ L cow}inli\l’fsmz@’ - c},

o gin sin¢ sin ¢ sin ¢ sin ¢
< 3 B ,‘2_. {2_.2 HE_-E
x3[s)=6’3—%e SCDSWCI(—cos(pcos K.ismzfps_'_c + ws+c sin ws+c ;
=g sin ¢ sing sin¢p

Where C, C) Cy Oy are constants of integration
We can use Mathematica, yields
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cosrp=singo=g,c=cl=02=C3=K=1.
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