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Abstract: In this article, for comparing the coefficients of variation for several normal populations, we
propose a novel approach by using the concepts of generalized test variable and generalized p-value and

develop an approximation test based on conditional mean and conditional variance of this generalized
approach. We compare these two tests with four existing tests via Monte Carlo simulation. Simulation
studies show that the generalized approach and new approximation test have satisfactory type T error
probabilities and these two tests are better than the existing tests. Finally, the tests are illustrated using two

real examples.
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INTRODUCTION

The Coefficient of Vanation (CV) of a random
variable X, with mean p=0 and standard deviation o, is
defined by the ratio o/p. This ratio is an important
measure of variation and it 15 useful i medicine,
biology, physics, finance and engineering, because it is
free from measurement vmits and it can be used for
comparing the variability of different populations. For
describing the variation within the data, CV's more
meaningful and useful than ¢ to compare the among
several groups of observations. Several tests have been
proposed for the equality of CV's from k normal
populations: Bennett test (Bemnett, 1976), Modified
Bennett test (Shafer and Sullivan, 1986), modified
Miller asymptotic test (Feltz and Miller, 1996),
likelihood ratio, wald test and score test for equality of
mverse coefficients of variation (Nawry and Rao, 2003).

Some Monte Carlo simulation studies are
performed by Feltz and Miller (1996), Fung and Tsang
(1998) and Nawy and Rao (2003) br comparing the
sizes and powers. By evaluating these literature we
observe that none of these tests performs satisfactorily
in terms of type I error probability and especially when
the sample sizes are unequal, type I error probabilities
of these tests are larger than nominal level. Therefore,
finding a test with type T error probabilities smaller than
nominal level is more useful. The concepts of
generalized test variable and generalized pvalue are
introduced by Tsui and Weerahandi (1989) and
successfully are applied in developing hypothesis
tests 1n situations where traditional approaches do not

provide useful
these concepts, we obtain a method for testing the
equality of CV's for k normal populations. Also a
new approximation test is given for testing the
equality of CV's by using this generalized approach.

Our  simulations

solutions. In this article, using

studies show that type I error
probabilities of these new approaches are smaller
than nominal level.

This paper s orgamzed as follows: In Section 2, a
generalized approach test is given for comparing the
CV's and using this generalized approach, a new
approximation approach is proposed. In Section 3, a
simulation study is performed for comparing the type 1
error probabilities of two new approaches with four

existing tests. Also, Two real examples are provided.
TESTS FOR EQUALITY OF CV'S

First we give a Theorem that is applicable in this
Section. Then we will introduce a generalized approach
for testing the equality of C'V's based on generalized
test variable and generalized p-value. Using this
generalized approach, a new approximation test is
derived.

Theorem 1: Let v = (yy.....,vyx) be a vector and
V = [diag(vy.,..., v )] be a kxk matrix. Then

Sy T

(Hy) [HVH | Hy- Syl (1
1=1
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where H=[1:D],1 =(1,....1) and D = [diag(-1,...,-1)].
Proof: The proof is obvious. W

Let X;~N(u /), 1= 1.k j=1.n bek
mndependent random samples from neormal populations

and let n= Z:;ln1 be the total sample size. The sample

mean and sample variance of the ith population are

X, = Zj;lxiJ/ni
and
S12 = Z]nl:l(xu - )_( 1)2/(ni _1)

respectively. The CV for the ith population is defined as

and the interested problem is hypothesis test

Hyp=.=q.=¢

where ¢ 1s the unknown common CV parameter. This
test 13 equivalent to

H,: He=0 (1)
where
0=(49,....9)
o, ——=L -1, .k
q)l Gl
A generalized approach: A generalized pivotal

variable for 6; based on ith sample 1s given by

Z

U X Z u, -
T. = i i i i &) _ 2
g ‘\In1 1 s, r]] Jl'll 1 i(obs) rnl ( )
where
-~ X
g =2
i(obs) 51
»_ (n, DS} 2 _ )_(fl-ll
U= ——7F— ~x(n1_1),Zi —.,’nl = ~N(0.1)

O
1

1

2
(i)

and X, and s’ are the observed values of X, and §

respectively.

Remark 1: Tian (2005) proposed a generalized pivotal
variable for the common coefficient variation parameter

854

based on generalized pivotal variable in (3). For details
see Tian (2005).
The observed value of T, is 8; and distribution of

T, does not depend on any unknown parameter. Hence
T, is a generalized pivotal variable for ;. Therefore a

generalized pivotal variable for HE is

Ty =H(Ty ... Te ) '=HT, (3)
where
Ty= (T T, )
Consider
%=(%,..X)
and
S*=(S2...,8H)

From (4), we see that the conditional expectation of
The given (X,8)=(X,4) is

b = BT ®sh)] - H{poin ] @)
where
= T )] -2 U |
)

;
N R
i(obs)

Ry
2

Also the conditional covariance matrix of Tyg
given (X,8)=(%,4) is

— . 2 2 Ve
. :Covﬁ;Ia (%8 )} :H[d.lag(GTI,...,csTk )]H (6)
where
o2 =Var[T I(X,s ):|=%VM[U ]-s—L
T1 81 ” Tl1 71 i I']l
My | . ™
= 1_—2 e*zb + —
T N L
(n DR '

Let T denote the standard expression of Tgg with

-1
T =% Ty —Hy)
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where r and Zt are given by (5) and (7), respectively.
For given (X,s°) the observed value of T is

1
2

=5, (Ho-u,)

and the distribution of T
unknown parameter.

of P{||IT|Px/f

is independent of any
Therefore, the distribution

15 independent of any unknown

parameter. Let q, ., , be the 100y th percentile of [ITIF:

s0 we have
P{HTHZEqHTTH,}} :y

Since the observed value of T is IB, the 100y
confidence region of HO can be solved by the inequality

P{(HO— 1) I (HO— o) < q ey J =¥

Therefore, the generalized pvalue for testing (2)
can be given by

p=P {||TI"=| [HIf|Hy =P {|IT|[ 2/, II'}

:P{(THe7""T)‘E;1(TH87""T)2 l"'r all"'r} &)
=P{Q= Ik}
where
_L _L
Ly =230 —pp ) =270,
and
Q=(Tye— P-T)IE'EI(THB —H)
Remark 2: Based on Theorem 1, we have
5 [ZGT b I
(IR TR ZGT%'L _J__ ®)
i=1 ZGT
and
Q=(Ty- “’T)IZ'}I(THG -
k [ZGT (Te l"I'T )] (1 0)
Z (T _“'1") k 9
= ZGTi
1=1
where p, and G-% are given in (6) and (8),
respectively.

The generalized p-value mn (9) rejects Hy when p 1s

less than the level o. The following algorithm is useful
for computation of p.

855

Algorithm 1: For given (ny,...,ny) and (éf(nhs),...,é:(uhs)) \

For T=1,....,M generate 7;~0,1) and Uf-vx(2 1)
54—

i1=1,. .k compute T, = Tyg, |§ = b, Z; = Zpin {4, (3)

and (7), respectively. compute

[ITH=(T —u) LT -n)

and
I8y 7= Wk,
Let Wj = 1if [|T | 2] i, I

I —m
MZ J=1\Nri

p-value in (9) for hypothesis test in (2).

.else W;=0.

simulated estimate of generalized

Our new approximation test: Here, we give a new
approximation test for testing equality of CV's.
Consider the following test statistic

k
D vyl

i= 1

k

AT= ZV_I i

Vi
1=1
where
A F(—z)
C Tl
iy | o=
v, =| 1- z — 8, +L and9:=£
m-hrie— | " 3
2
Obtaining exact distribution of AT is very

difficult and herefore, we propose an approximation
distribution for it. Since the observed value of Q is
equal to observed value of AT and also we can easily
show that
E(Q(Xs)=k-1  Var(Q|(Ks))=2(k-1)
an approximation distribution for AT under Hy 1s a chi-

square distribution with l-1 degrees of freedom.
Therefore, AT rejects Hy if AT > y?

o (k=13 7
NUMERICAL STUDY
We compare the two new tests with four existing

tests via Monte Carlo simulation and all tests are
illustrated using two real examples.
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Table 1: Estimated type I error probabilities for tests ato=005

Table 2: Estimated type I error probabilities fortests ato=0.05

k=3 (k=13)
Test Test
(m,...m) GP AT BT MBT WT  MT (ns,....0) G AT BT MBT WT MT
(5,5,5) 0.022 0.018 0.059 0.059 0.04%9 0.047 (5,5,5,5,5) 0.022 0.021 0.080 0.080 0.075 0.071
(5,6,7) 0.025 0.029 0.066 0.069 0.062 0.059 {5,5,5,10,30) 0.041 0.038 0.086 0.067 0.071 0.058
(5,10,15) 0.037 0.030 0.057 0.052 0.06% 0.054 (5,5,5,30,30) 0.036 0.037 0.068 0.057 0.064 0.044
(5,5,20) 0.046 0.043 0.059 0.082 0.062 0.067 (5,6,7.8,9) 0.031 0.030 0.066 0.067 0.061 0.061
(5,20,30) 0.049 0.047 0.079 0.070 0.063 0.065 (5,10,15,20,25)  0.045 0.043 0.060 0.056 0.060 0.054
(5,15,15) 0.047 0.039 0.062 0.068 0.052 0.056 (5,10,10,20,20)  0.039 0.03% 0.074 0.070 0.071 0.058
(7.7.7) 0.029 0.029 0.06e6 0.067 0062 0.06l (5,30,30,30,30) 0.042 0.042 0.051 0.049 0.056 0.046
(7.8.9) 0.032 0.033 0.059 0.05% 0.055 0.054 (7.7,7,7,7) 0.019 0.021 0.055 0.055 0.051 0.049
(7,7,20) 0.03%9 0.038 0.069 0070 0.064 0.055 (7.8,9,10,11) 0.031 0.029 0.054 0.055 0.051 0.048
(7,20,20)  0.037 0.039 0.057 0.046 0.047 0.047 (7.7,7,30,30) 0.042 0.042 0.064 0.060 0.059 0.050
(10,10,10) 0.026 0.032 0.041 0.041 0.041 0.040 {7,15,15,30,30) 0.045 0.043 0.060 0.059 0.059 0.054
(10,11,12) 0.033 0.037 0.059 0.060 0.059 0.058 {7,30,30,30,30) 0.048 0.047 0.061 0.062 0.061 0.060
(10,15,15) 0.033 0.031 0.046 0.047 0.045 0.045 (10,10,10,10,10) 0.033 0.035 0.069 0.071 0.072 0.071
(10,15,20) 0.044 0.042 0.056 0.055 0.056 0.056 (10,11,12,13,14) 0.041 0.041 0.062 0.060 0.059 0.060
(10,10,20) 0.043 0.040 0.062 0.064 0.064 0.057 {10,10,10,20,20) 0.038 0.042 0.060 0.058 0.060 0.057
(10,20,30) 0.048 0.046 0.060 0.055 0.057 0.053 (10,10,30,30,30) 0.042 0.042 0.058 0.053 0.057 0.054
(20,20,20) 0.047 0.046 0.062 0.062 0.056 0.054 {10,20,20,30,30) 0.045 0.044 0.060 0.059 0.058 0.055
(20,21,22) 0.047 0.050 0.057 0.057 0.055 0.054 {20,20,20,20,20) 0.048 0.048 0.058 0.059 0.060 0.060
(20,20,25) 0.048 0.049 0.067 0.068 0.069 0.066 (20,21,21,23,24) 0.042 0.038 0.061 0.059 0.063 0.05%
(20,25,25) 0.045 0.047 0.059 0.059 0.058 0.060 {20,20,20,30,30) 0.041 0.041 0.055 0.057 0.053 0.052
(20,30,30) 0.047 0.047 0.056 0.053 0.052 0.054 {20,30,30,30,30) 0.042 0.03%9 0.053 0.051 0.053 0.051
(30,30,30) 0.049% 0.047 0.053 0.053 0.056 0.056 (30,30,30,30,30) 0.042 0.041 0.051 0.051 0.052 0.051
(30,31,32) 0.480 0.049 0.060 0.060 0.058 0.056 (30,31,32,32,34) 0.048 0.044 0.057 0.058 0.056 0.055
(30,35,40) 0.041 0.042 0.045 0.047 0.044 0.044 {30,30,30,40,40) 0.045 0.043 0.051 0.052 0.049 0.048
(30,40,40) 0.045 0.046 0.050 0.052 0.049 0.047 (30,40,40,40,40) 0.050 0.048 0.055 0.055 0.056 0.056
Simulation: A Monte Carlo simulation study is We observe that FEstimated type I error

performed to compare the size of the tests to equality
of CV's that are given in Section 2. For tlus propose
we generate X, ~N(100,100) and s/ ~1001(2n__1)/(ni—1) ,
1=1,...k Therefore, all populations have the same CV,
¢ = 0.1. We choose this value because in many of the
agricultural experiments, CV is around 0.1 (Nairy and
Rao, 2003). Also, for other values of CV, we found

similar results.
2

i »

p-value (GP) by algorithm 1 wath 5000. We repeat this
N = 10000 times and number of the p-values that are

Using X, and s;, i = 1,...,k we obtain generalized

less than o = 0.05. Also, we obtain the test statistics for
new approximation test (AT), Bennett Test (BT),
modified Bennett test (MBT), Wald Test (WT) and
modified Miller test (MT) and for each test, we number
of the cases that test statistics are greater than ;. .-

In fact, the nominal level 1s « = 0.05 and we estunate

the type I error probabilities for tests. The results are
given in Table 1 and 2 fork =3 and 5, respectively.

probabilities for the generalized pvalue and the new
approximation test always are smaller than o, but
type T error probabilities of other tests are larger
than nominal level. Therefore, the generalized approach
test and the new approximation test are better than
existing test for equality of CV's for several normal
populations.

Two examples: These two real examples are proposed
by Nairy and Rao (2003) and here, we illustrate for the
given tests in Section 2. We note that the generalized
p-values are obtained using Algorithm 1 with M =
10000, Also, the pvalues for GP, AT, BT, MBT, WT
and MT are given in Table 3.

Example 1: Over nine years from 1991-1999 for the
State of Karnataka, India, This data is collected to
catches of four kinds of fish. For these four kinds of
fish the estimate of CV's, ;.1 = 1,234, are 03481,

1.0586, 0.3760,and 0.8880, respectively.
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Table 3: p-values of tests for two real examples

Test

GP AT BT MBT WT MT
Example 1 0.0525 0.053% 0.0534 0.0439 0.0301 0.0609
Example 2 0.6963 0.6972 0.7064 0.7064 0.6277 0.6051

Example 2: This data refers to survival of patients from
four hospital, which 13 a part of the data in Appendix D
of the Fleming and Harrinton (1991). The sample size
for these hospitals are 5, 4, 3 and 10. The estimate of
CV's, ¢/, 1= 1,234, are 04937, 1.1224, 0.5852 and

0.6136, respectively.
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