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Abstract: In this paper, the Parametric Iteration Method (PIM) is first proposed for solving Riccati 
Differential Equations (RDEs). The original PIM provides the solution of a RDE as a sequence of 
approximations. A new application of the PIM is then given for handling RDEs , which provides the 
solution of a RDE as a series of approximations. The analyzed example reveals that the developed 
analytical algorithms are simple and effective to solve RDEs .  
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INTRODUCTION 

 
 The Riccati differential equations are a class of nonlinear differential equations of much importance, and it 
plays a significant role in many fields of applied science. For example, a well-known one-dimensional static 
Schrödinger equation is closely related to the RDE. Solitary wave solutions of a nonlinear partial differential 
equation can be expressed as a polynomial in two elementary functions satisfying a projective Riccati equation. In 
this work, we consider a RDE of the following form:  
 
                                              2

0u( t )=A( t ) B(t)u C(t)u , u(t ) = c′ + +  (1) 

 
where A(t), B(t) and C(t) are given functions and c is an arbitrary constant. The importance of this equation usually 
arises in the optimal control problems . The feed back gain of the linear quadratic optimal control depends on a 
solution of a RDE which has to be found for the whole time horizon of the control process [1]. Now a days, deriving 
its analytical solution in an explicit  form seems to be unlikely except for certain special situations. Of course, if one 
particular solution of Eq. (1) is known , then its general solution can easily be found. For general cases, one must 
appeal to numerical techniques or approximate approaches for getting its solutions. 
 Recently, due to its importance in many fields of applied sciences, a vast amount of research work has been 
invested in the study of numerical and analytical of Eq. (1). Recently, El-Tawil et al. [2] applied the multistage 
Adomian Decomposition Method (ADM) to solving the RDE and compared the results with the standard ADM. Tan 
and Abbasbandy in [3] employed the Homotopy Analysis Method (HAM) to solve this equation. Newly, 
Abbasbandy [4] applied the Homotopy Perturbation Method (HPM), which is a special case of the HAM, to solve 
the RDE and compared the obtained results for this equation. Also, Abbasbandy [5] used the iterated HPM to solve 
this equation, the obtained results were better for the long time horizon. Furthermore, in [6, 7], the Variational 
Iteration Method (VIM) was utilized for solving Eq. (1). More recently, Geng et al. proposed a piecewise VIM for 
the RDEs [8].  
 In this paper, the effective Parametric Iteration Method (PIM) [9] is presented for finding the approximate 
analytical solution of the RDE (1). It is shown that the PIM reasonable includes all the above-mentioned 
approximate method.   
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PARAMETRIC ITERATION METHOD 

 
 In this section, the PIM and new applications of that are proposed for solving Eq. (1), which is capable of 
providing the solution both as a sequence and series .  
 

THE PIM EXPRESSED BY SEQUENCE 
 
 In this subsection, we first describe the PIM expressed by sequence for solving the RDEs of (1), which is the 
main feature of the PIM. The PIM gives rapidly convergent successive approximations of the exact solution if such a 
solution exists , otherwise approximations can be used for numerical purposes. The idea of the PIM expressed by 
sequence is very simple and straightforward. 
To explain the basic idea of the PIM expressed by sequence, we first consider Eq. (1) as below:  
 
                                                      L[u(t)] N[u(t)]=g(t)+  (2) 

 
where  L  denotes  a  continuous  auxiliary  linear  operator  with respect to u, N is a continuous nonlinear operator 
with respect to u and g(t) is a given analytic function. Then, we construct a family of iterative processes for Eq. (2) 
as [9, 10]:  
 

                                     
t

n 1 n (t ,s) n nt 0
u ( t ) = u ( t ) h (H(s){L[u (s)] N[u (s)] g(s)})ds+ − Λ + −∫  (3) 

with the property  
                                                        n 0 0u (t ) = u ( t ) ,  n∀  (4) 

 
where u0(t) is the initial guess, which can be freely chosen from solving its corresponding linear equation 

0L[u ( t ) ] = 0  or 0L[u (t)]=g(t)  and the subscript n denotes the nth iteration.  (t,s) 0Λ ≠  denotes the general multiplier, 

which taking into account the auxiliary linear operator as L[u]=u B(t)u′ −  can be identified easily and efficiently by 
solving the following linear conditions [10, 12]: 
 

                                                 ( t ,s) ( t ,s) (t,t)B(s) =0 , = 1
s

∂ Λ + Λ Λ −
∂

 (5) 

which gives us  

                                                       ( )t

( t , s ) s
= exp B( )dΛ − ξ ξ∫  (6) 

 
Using the relations (1), (3) and (6), we find that nu (t), n 1≥  can be obtained in general by  
 

                        ( )t t 2
n 1 n n n nt s0

u ( t ) = u (t) h exp B( )d (H(s){u (s) A(s) B(s)u (s) C(s)u (s)})ds+ ′+ ξ ξ × − − −∫ ∫  (7) 

 
which is called the PIM expressed by sequence of first kind. Now let us consider (7) as below: 
 

             ( ) ( )t t t t 2
n 1 n n n nt s t s0 0

u ( t ) = u ( t ) h exp B( )d [u (s) B(s)u (s)]ds h exp B( )d H(s)[A(s) C(s)u (s)]ds+ ′+ ξ ξ − − ξ ξ +∫ ∫ ∫ ∫  (8) 

 
By using simple integration by parts, we get  
 

                                            ( )t t

n n 0t s0
h exp B( )d L[u (s)]ds=hu (t) hu (t)ξ ξ −∫ ∫  (9) 

 

where 
t

0 0 s
u (t) u(t )exp( B( )d )= ξ ξ∫ . Here, in view of (1), (4) and (9), Eq. (8) can be rewritten as 
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                            ( )t t 2
n 1 n 0 nt s0

u ( t )=(1 h)u (t) hu (t) h exp B( )d H(s)[A(s) C(s)u (s)]ds+ + − − ξ ξ +∫ ∫  (10)  

which is called the PIM expressed by sequence of second kind.  
 The h≠0 and H(t)≠0 denote the so-called auxiliary parameter and auxiliary function, respectively, which can be 
chosen in an efficient manner [10,12]. Accordingly , the successive approximations nu (t) ,n 1≥  of the PIM expressed 
by sequence will be readily obtained by choosing all the above-mentioned parameters. Consequently, the exact 
solution can be obtained by using  
 
                                                             n

n
u(t)= u (t)lim

→ ∞
 (11) 

 
 It is easy to observe that here we are capable of determining the multiplier without using the variational theory 
applied to the VIM [6-8]. This can be considered as an obvious advantage of the PIM expressed by sequence over 
the VIM. Also, the parametric iteration schemes of (7) and (10) reasonably include the VIM. 
 

THE PIM EXPRESSED BY SERIES  
 
 In the next , the PIM expressed by series, which is a new feature of the PIM, is made clear for solving Eq. (1). 
This method will provide the solution of Eq . (1) as a series of approximations. To explain its idea behind, we first 
define the solution u(t) of Eq. (1) by a series as follows:  
 

                                                   
n

n k k
k=0 k = 0

u ( t )= v (t),     u(t)= v (t)
∞

∑ ∑  (12) 

 
According to the definition (12), the nonlinear term N[u] can be generally expressed in the form [12]: 
 

                                                  k k 0 k
k=0 k=0

N[u]=N v = N ( v , ,v )
∞ ∞ 

 
 
∑ ∑ L  (13) 

 where, by simp le operation, 
                                                             0 0 0N ( v ) = N [ u ] (14) 

 

                                               
k k 1

k 0 k i i
i=0 i=0

N (v , , v ) = N v (t) N v ( t )
−   

−   
   
∑ ∑L  (15) 

 
As a logical approximation of the identity (13), we have  
 

                                       k k 0 k k 0 k
k=0 k = 0 k = 0

N[u]=N v = N ( v , ,v ) = N (v , ,v )
∞ ∞ ∞ 

 
 
∑ ∑ ∑L L  (16) 

 
where the k 0 kN (v , ,v )L ’s are selected from the terms k 0 kN (v , ,v )L  so that the sum of subscripts of the components 

of v(t) of each term of k 0 kN (v , , v )L  is equal to k. Here we suppose that all series are convergent . Let us rewrite (3) 

in the following iteration formula:  
 

t

n 1 n (t,s) n 1 n 1t0
u ( t ) = u ( t ) h (H(s){L[u (s)] N[u (s)] g(s)})ds+ − −− Λ + −∫  

                                                   
t

(t,s) n n 1 n n 1t0
h (H(s){L[u (s) u (s)] (N[u (s)] N[u (s)])})ds− −− Λ − + −∫  (17) 

 
But it is well known from (3) that  
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t

n n 1 (t ,s) n 1 n 1t 0
u ( t ) = u (t) h (H(s){L[u (s)] N[u (s)] g(s)})ds− − −− Λ + −∫  (18) 

 

 In view of (13), by substituting (18) into (17) and then applying 
n

n kk=0
u ( t )= v (t)∑  on both sides of resulted 

formulation yield  
 

                                  
t

n 1 n (t,s) n n 0 nt0
v ( t ) = v ( t ) h (H(s){L[v (s)] N [v (s),...,v (s)]})ds+ − Λ +∫  (19) 

 
In a similar manner, in view of (16), we will have  
 

                                  
t

n 1 n (t,s) n n 0 nt0
v ( t ) = v ( t ) h (H(s){L[v (s)] N [v (s),...,v (s)]})ds+ − Λ +∫  (20) 

 
 According to (12), u0 = v0 and 1 0 1u = v v+ , thus the components v0 and v 1 of the recursive relations (19) and 

(20) are determined from (18) as:  
 

0 0v ( t ) = u ( t )  
 

                                                    
t

1 (t,s) 1 0t0
v ( t ) = h (H(s){R [v (s)]})ds− Λ∫  (21) 

where  
                                              2

1 0 0 0 0R [v (s)]=v (s) B(s)v (s) C(s)v (s) A(s)′ − − −  (22) 
 
In the light of (19)-(22), we can readily express the recursive relation of (19) and (20) by the function χ in the form  
 

0 0v ( t ) = u ( t )  
 

                                            
t

n n n 1 (t,s) n n 1t0
v ( t )= v (t) h (H(s){R [v (s)]})ds− −χ − Λ∫  (23) 

 
n n 1 n 1 n 1 n 1 0 n 1 nR [v (s)]=v (s) B(s)v (s) C(s)N (v (s),...,v (s)) A(s)(1 )− − − − −′ − − − − χ  

 
which is called the PIM expressed by series of first kind and  
 

0 0v ( t ) = u ( t )  

 
                                             

t

n n n 1 (t,s) n n 1t0
v ( t )= v (t) h (H(s){R [v (s)]})ds− −χ − Λ∫  (24) 

 
n n 1 n 1 n 1 n 1 0 n 1 nR [ v (s)]=v (s) B(s)v (s) C(s)N (v (s),...,v (s)) A(s)(1 )− − − − −′ − − − −χ  

 
which is called the PIM expressed by series of second kind, where  
 

                                                           n

0, for n 1
=

1, for n 1
≤χ  >

 (25) 

 

 Therefore, the solution of Eq. (1) can be obtained as an infinite series, i.e., nk=0
u( t )= v (t)

∞∑  given by (23) and 

(24) [12]. It is interesting to point out that these recursive procedures can be useful for revealing the relation 
between the PIM and the existing approximate analytical methods such as the ADM, HPM, HAM and the method 
proposed in [11]. 
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A NUMERICAL IMPLEMENTATION 
  
 To give a clear overview of the content of this study, a quadratic Riccati differential equation will be studied. 
This equation will be tested by the above-mentioned algorithms, (7) and (24), which will ultimately show the 
efficacy of these methods [12]. All the results obtained here are calculated by using the symbolic calculus software 
Maple 11.  
For the sake of comparative purposes, we consider a quadratic Riccati differential equation as follows [2-8,12]:  
 
                                                     2u =1 2u u , u(0)=0′ + −  (26) 

with the following exact solution  

                                               1 2 1
u( t )=1 2tanh 2t log

2 2 1

  −
+ +    +  

 (27) 

 
 In order to solve Eq. (26) by using the PIM expressed by sequence of first kind (7), we choose (t,s) = 1Λ −  (i.e.,  

1(t)=1α  and 0( t )=0α ) and H(t) = 1. We, therefore, have the following PIM formula [12]: 

 

                                           
t 2

n 1 n n n n0
u ( t ) = u ( t ) h (u ' ( s ) 1 2u (s) u (s))ds+ + − − +∫  (28) 

 
Starting from u0(t) = t, we will have the following few approximations for (26): 
 

3 2
1

1u ( t ) ht ht t
3

= − +  

 

                  3 7 3 6 2 5 2 4 3 2
2

1 1 2 1 2 1 1u (t) h t h t h h h t h t h h h t [ h h( 1 h)]t t
63 9 15 5 3 3 3

    = − + + − + + + + − + − − +        
 (29) 

M  
 
 Here  we  have  plotted  the  valid  region  h  of  the fifth-order PIM expressed by sequence of first kind solution 
in Fig. 1. Also, the approximate solutions of the 5th-order PIM expressed by sequence of first kind when h = -1 and 
h = -0.9 can be observed in Fig. 2. 
 

 
 

Fig. 1: The valid region of h by using the 5th-order PIM expressed by sequence of first kind solution for (26) 
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Fig. 2: Approximate solution of the 5th-order PIM expressed by sequence of first kind for (26) where Solid line: 

Exact, Dot line: h = -1 (i.e., the VIM) and Dash line: h = -0.9 
 

 
Fig. 3: The valid region of h by using the 5th-order PIM expressed by series of second kind solution for (26) 
 
 Now, according to (24), we will have the following few approximations of the PIM expressed by series of 
second kind for (26): 
 

0v (t) t=  
 

                                                             3 2
1

1v( t ) ht ht
3

= −  (30) 

 

2 5 2 4 2 3 2
2

2 2 1
v ( t ) h t h t h h t h(1 h)t

15 3 3
 = − + + − +  

 

M  
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Fig. 4: Approximate solution of the 5th-order PIM expressed by series of second kind for (26) where Solid line: 

Exact, Dot line: h = -1 (i.e., the ADM and HPM) and Dash line: h = -0.9 (i.e., the HAM) 
 
 The valid region h and the approximate solution of the 5th-order PIM expressed by series of second kind can be 
seen in Fig. 3 and 4. 
 From the results proposed here, it is easy to conclude that the PIM proposed in this work could lead to a 
promising analytical method for solving nonlinear ordinary differential equations.  
 

CONCLUDING COMMENTS 
 
 In this paper, the parametric iteration method (PIM) were applied to obtain approximate analytical solution for 
Riccati differential equations (RDEs). It was shown that the PIM is capable of providing the solution both as a 
sequence and as a series and logically includes some previous approximate analytical methods. This method 
provides us the convinent way to control the convergence rate of the solution. The numerical results reveal that the 
method presented in this paper is easy to implement. Moreover, it can further be employed easily to accurately solve 
other nonlinear ordinary differential equations. 
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