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Abstract: In this work, we introduce new applications of Modified Variational Iteration Method (MVIM). 
The MVIM is used for solving Linear and nonlinear Schrödinger equations, the modified Kawahara 
equation and the Klien-Gordon-Type equation. A comparison between Variational Iteration Method (VIM) 
and MVIM shows that the MVIM numerical results convergences more rapidly than VIM numerical 
results. The MVIM method is capable of greatly reducing the size of calculations at the same time it 
maintains high accuracy of the numerical solution. Furthermore, the MVIM does not require a large 
capacity of computer memory and it doesn’t take more time like VIM. The method is very simple and easy. 
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INTRODUCTION 
 
 The investigations of the exact solutions of nonlinear evolution equations play an important role in the study of 
nonlinear physical phenomena. For example, the wave phenomena observed in fluid dynamics, plasma and elastic 
media are often modeled by the bell-shaped sech solutions and the kink-shaped tanh solutions. The exact solution, if 
available, of those nonlinear equations facilitates the verification of numerical solvers and aids in the stability 
analysis of solutions [1-4]. A broad class of analytical solutions methods and numerical solutions methods were used 
in to handle these problems such as piecewise analytic method [5-7], Backlund transformation [8], Hirota’s bilinear 
method [9, 10], symmetry method [11], the inverse scattering transformation [12], the tanh method [13, 14], the 
Adomian decomposition method [15-17] and other asymptotic methods for strongly nonlinear equations [18]. 
 The Variational Iteration Method (VIM) was proposed by "He" in 1997 [19-21]. It had been proved by many 
authors [21-33] to be a powerful mathematical tool for solving various types of nonlinear problems, which represent 
a plenty of modern science branches.  
 Abassy et al. tried to solve nonlinear partial differential equations using variational iteration method and found 
drawbacks in VIM. Abassy et al. introduced the modified variational iteration method which overcomes VIM 
drawbacks. The MVIM is used to give an approximate power series solutions for some well-known non-linear 
problems. It facilitates the computational work and minimizes it. This method can effectively improve the speed of 
convergence. Abassy et al. also proposed further treatments on MVIM results by using Padé approximants and 
Laplace transform. The treatment improves the convergence and gives the closed form solution in some cases, for 
more details see [34-38]. 
 In this work we aim to introduce a new application of MVIM. MVIM is used to solve the Non-
Linear Schrödinger (NLS) equation, modified Kawahara equation and the Klien-Gordon-Type equation.  
 The Non-Linear Schrödinger (NLS) equation has been established as a widely applicable model in various areas 
of physics as nonlinear optics, the theory of deep water waves, plasma physics, superconductivity, quantum 
mechanics, etc. A large number of researches conducted on the Nonlinear Schrödinger (NLS) equation. For 
example, its soliton solutions, conserved quantities, Bäcklund transformation, Darboux transformation and others 
have been discussed in Refs [12, 25, 39-51].  
 The modified Kawahara equation has wide applications in physics such as plasma waves, capillary-gravity 
water waves, water waves with surface tension, shallow water waves and so on [52-54].  
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 The nonlinear Klein-Gordon equation appears in many types of nonlinearities. It plays a significant role in many 
scientific applications such as solid state physics, nonlinear optics and quantum field theory [55, 56]. 
 This paper demonstrates that MVIM solves the drawbacks in VIM through applying the method to nonlinear 
equations. The method is quite straightforward to write computer codes using Mathematica. It is demonstrated that 
the MVIM numerical results converge more rapidly than VIM numerical results.  
 

MODIFIED VARIATIONAL ITERATION METHOD 
 
Consider the general non-linear initial value problem 
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where 
s

sL , s 1,2,3,
t

∂
= =

∂
…  is the highest partial derivative with respect to t, R is a linear operator and Nu(x, t) is the 

nonlinear term. Ru(x, t) and Nu(x, t) are free of partial derivative with respect to t. 
 
MVIM [34, 35] is used for solving (1) which the following iteration formula is used  
 

                                     { }
t

n 1 n n n 1 n n 10
U (x,t) U (x,t) ( ) R(U U ) (G G ) d+ − −= + λ τ − + − τ∫  (2) 

 

where λ(τ) is called a general Lagrange multiplier and equals 
( s 1 )(t )

(s 1)!

−− − τ
−

, which is identified optimally via 

variational theory, Gn(x,t) is a polynomial of degree (s(n+1)-1) and is  obtained by 
 

s(n 1 )
n nNU (x,t) G (x,t) O(t )+= +  

 
The iteration formula (2) can be solved iteratively using  
 

s 1s 1
1 0 0 1

f (x)
U 0 ,U f ( x ) f (x) t t

(s 1)!
−−

− = = + + +
−

…  

 
to obtain an approximate power series solution for equation (1). 
 MVIM gives an approximate series solution that converges to equations (1) closed form solution in the 
neighborhood of initial points. 
 

APPLICATION 1: SCHRÖDINGER EQUATION 
 
 In the following subsections, two case studies, one is linear and the other is nonlinear, are solved to illustrate the 
efficiency of MVIM. 
The linear one takes the form 
                                                       2

t xxu i u 0, u(x,0) f(x), i 1+ = = = −  (3) 

 
and the nonlinear Schrödinger equation takes the form 
 

                                                       2
t xxu i u i q u u 0,u(x,0) f(x)− − = =  (4) 
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Case-study 1: Consider the linear Schrödinger equation 
 
                                                       t xxu iu 0,u(x,0) 1 cosh(2x)+ = = +  (5) 

Solving (5) by MVIM where  
2

2

u(x,t)
Ru(x,t) i

x
∂

=
∂

 

 
Nu(x, t) = 0, s = 1 which leads to λ = -1 and the following iteration formula is used:  
 

                                                        { }
t

n 1 n n n 10
U U R(U U ) d+ −= − − τ∫  (6) 

where U-1 = 0 and U0 = 1+cosh(2x) 
The following results are obtained 
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This is an approximate power series expansion which converges to equation (5) closed form solution  
 
                                                             4itu(x,t) 1 cosh(2x)e−= +  (8) 

 
Applying the VIM gives the same result. 
 
Case-study 2: Consider the nonlinear Schrödinger equation 
 

                                                     2 i k x
t xxu i u i q u u 0,u(x,0) e− − = =  (9) 

 

where i 1= − , q and k are constants.  
 Substituting by u u(x,t) a(x,t) ib(x,t)= = +  in equation (9) before solving it with MVIM, where a and b are real-
valued continuous functions of x and t. It leads to the following coupled system of equations: 
 

                                                            2 2
t xxa b q(a b )b 0+ + + =  (10) 

 

                                                            2 2
t xxb a q(a b )a 0− − + =  (10b) 

 
and subjected to the following initial conditions 
 

a(x,0) cos(kx), b(x,0) sin(kx)= =  
 
Equation (10) and Error! Reference source not found. is used to obtain solution for a and b respectively. 
Applying MVIM to equation (10) gives us:  
 

2
2 2

2
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R1 ,N1 q(a b)a ,

x t
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= = +
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leads to s = 1, λ = -1 and using the following iteration formula  
 

                                                { }
t

n 1 n n n 1 xx n n 10
A A (B B ) (GA GA ) d+ − −= − − + − τ∫  (11) 

 
Applying MVIM to equation Error! Reference source not found. gives us:  
 

2
2 2

2

a(x,t) b
R2 ,N2 q(a b )a,

x t
∂ ∂

= = − +
∂ ∂

 

 
leads to s = 1, λ = -1 and the following iteration formula is used:  
 

                                              { }
t

n 1 n n n 1 xx n n 10
B B (A A ) (GB GB ) d+ − −= − − − + − τ∫  (12) 

 
Equation (11) and (12) are solved iteratively and simultaneously using  
 

1 1 0 0A 0,B 0 ,A cos(kx),B sin(kx)− −= = = =  

 
GAn(x,t) and GBn(x,t) are calculated by 
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The following results are obtained 
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 (13) 

 
This solution is an approximate power series solution to the closed form solution of (9) 
 

                                                                 2i(kx (k q) t )u(x,t) e − −=  (14) 
 
Appling VIM leads to using the following iteration formulas  
 

                                ( ){ }t 2 2
n 1 n n n xx n n n0

A A A (x, ) B (x, ) q A (x, ) B (x, ) B (x, ) d+ τ= − τ + τ + τ + τ τ τ∫  (15) 

 
                                ( ){ }t 2 2

n 1 n n n xx n n n0
B B B (x, ) A (x, ) q A (x, ) B (x, ) A (x, ) d+ τ= − τ − τ − τ + τ τ τ∫  (16) 

 
which are solved simultaneously and give the following results: 
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 Table 1 shows the consumed time in calculating Un(x,t) using MVIM and VIM. It is clear from Table 1, MVIM 
is very fast with respect to VIM. MVIM

6U (x,t)  is calculated by MVIM while VIM
2U (x,t)  is still being calculated by 

VIM. Figure 1 shows the absolute error between the closed form solution and U2(x,t) (MVIM and VIM). Figure 2 
shows the absolute error between the closed form solution and U6(x,t) in MVIM and U3(x,t) in VIM. Figure 3 shows 
that the Absolute error is decreased as successive terms are calculated. 
 

APPLICATION 2: THE MODIFIED KAWAHARA EQUATION 
 
Consider the modified Kawahara equation [52] given by 
 

                                      2 2
t x x xxx xxxxxx

3p
u u u u pu qu 0,u(x,0) sech (kx)

10q
+ + + + = =

−
 (18) 

 
Table 1: The time consumed in calculating Un(x,t) for NL Sequation (case-study 2) by VIM and MVIM using Mathematica 7 package 

 U1(x,t) U2(x,t) U3(x,t) U4(x,t) U5(x,t) U6(x,t) 

VIM 0.141 2.438 52.375 290.781 N/A N/A 

MVIM 0.171 0.437 0.577 0.734 0.89 1.062 
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Fig. 1: The Absolute error between the exact solution of (case-study 2)and approximate solution U2(x,t) obtained by 
MVIM and VIM (x = 0, q = 2 and k = 1) 
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Fig. 2: The Absolute error between the exact solution of (case-study 2)and approximate solution VIM

3U (x,t)  and  

  MVIM
6U (x,t)  (x = 0, q = 2 and k = 1) 
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Fig. 3: The Absolute error between the exact solution of (case-study 2)and approximate solution MVIM

2U (x,t) , 
MVIM
4U (x,t)  and MVIM

6U (x,t)  (x = 0, q = 2 and k = 1) 

 

where p and q are nonzero real constants and 
1 p

k
2 5q

−
= .  

Solving equation (18) using MVIM [34, 35] we found that: 

x xxx xxxxxxRu(x,t) u pu qu ,= + +  2
xNu(x,t) u u= , s = 1 which leads to λ = -1 and the following iteration formula is used:  
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                                                ( ){ }t

n 1 n n n 1 n n 10
U U R U U (G G ) d+ − −= − − + − τ∫  (19) 

 

Where U-1 = 0, 2
0

3p
U sech (kx),

10q
=

−
 and Gn(x,t) is a polynomial of degree n in t and is obtained from  

 

( ) ( )2 n 1
n n nx

U (x,t) U (x,t) G (x,t) O(t )+= +  

The following results are obtained 
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Where 
225q 4pa k

25q
−=  and 

1 p
k

2 5q
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This is an approximate power series expansion which converges to equation (18) closed form solution  
 

                                                        23p
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10q
= −

−
 (20) 

 
Solving equation (18) using VIM we found that: 
 

x xxx xxxxxxRu(x,t) u pu qu ,= + +  2
xNu(x,t) u u=  

 

and the following iteration formula is used:  
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Fig. 4: Solid gray line represents the absolute error between VIM

2U  and closed form solution (20) and dashed line 

represents the absolute error between MVIM
2U  and closed form solution (21) (x = 0, p = 1, q = 1) 

 
Where 

225q 4pa k
25q

−=  and 
1 p

k
2 5q

−
= . 

 
Comparing the results of VIM and MVIM, it is founded  
 

                                                              

(VIM) (MVIM)
1 1

(VIM) (MVIM) 3
2 2

(VIM) (MVIM) 4
3 3

U U

U U O(t )

U U O(t )

=

= +

= +

M
 (23) 
 
It is massive to write all the results of VIM in equation (23) and (24) so we write these terms in the form O(tn). 
 Analyzing equation (24), it is founded that all the terms in MVIM results contained in VIM results but there is 
other terms in VIM which deteriorate the convergence of VIM and take too much time in calculation. Figure 4 
shows the absolute error. 
 

APPLICATION 3: THE NONLINEAR KLIEN-GORDON-TYPE EQUATION 
 
Consider the nonlinear Klien-Gordon-Type equation [55, 57]  
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2 3
tt xx

t

u a u u u 0
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u(x,0) sech(k(x))

2
u (x,0) 2ck sech(k(x))tanh(k(x))

− + α − β =

α
=

β

α
=

β

 (24) 

 
where  

2 2k , , ,a
a c

α
= α β

−
 

and c are constants.  
Solving equation (24) using MVIM [34, 38] we found that: 

2
xxRu(x,t) a u u,= − + α  3Nu(x,t) u=−β , s = 2 which leads to λ = -(t-τ) and the following iteration formula is  used:  

 

                                            { }
t

n 1 n n n 1 n n 10
U U (t ) R(U U ) (G G ) d+ − −= − − τ − + − τ∫  (25) 

Where U-1 = 0  
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α α
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β β
 

 
and Gn(x,t) is a polynomial of degree (2n+1) in t and is obtained from  
 

( )3 2 ( n 1 )
n nU (x,t) G (x,t) O(t )+−β = +  

 
The following results are obtained 
 

   

2 3
2 4 2 3 4 3

1 0

4
4

2 1

5
6 4 5

c c
U U k ( 15cosh(kx) 3cosh(3kx))sech (kx)t k ( 23sinh(kx) 3sinh(3kx))sech (kx)t

12 2 12 2

c
U U k (770cosh(kx) 375cosh(3kx) 5cosh(5kx))

960 2

csech(kx) t k (1682sinh(kx) 237sinh(3kx) sin
960 2

α α
= + − + + − +

β β

α
= + − +

β

α+ − +
β

6 5

6
6 8 6

3 2

7
7 8 7

h(5kx))sech (kx)t

c
U U k sech (kx)t ( 91035cosh(kx) 68747cosh(3kx) 5047cosh(5kx) 7cosh(7kx))

161280 2

c
k sech (kx)t ( 259723sinh(kx) 60657sinh(3kx) 2179sinh(5kx) sinh(7kx))

161280 2

α
= + − + − + +

β

α
− + − +

β
M

 (26) 

  

Where 2 2k
a c

α
=

−
. 

This is a power series expansion of the closed form solution 
 

                                                      2 2

2
u(x,t) sech (x ct)

a c
 α α

= −  β − 
 (27) 

 
Solving equation (24) using VIM we found that: 

2
xxRu(x,t) a u u,= − + α 3Nu(x,t) u=−β  and the following iteration formula is used:  
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                                     ( ) ( ) ( ){ }t

n 1 n n n n0
U U (t ) U (x, ) R U (x, ) N U (x, ) d+ τ

= − − τ τ + τ + τ τ∫  (28) 

where  

0

2 2
U sech(k(x)) 2ck sech(k(x))tanh(k(x))t

α α
= +

β β
 

 
The following results are obtained 
 

 
 
Fig. 5: Solid gray line represents the absolute error between VIM

2U  and closed form solution (27) and dashed line 

represents the absolute error between MVIM
2U  and closed form solution (27) ( 1, 2,a 2,c 1,x 0)α = β = = = = . 

 

                                                              

(VIM) (MVIM) 4
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(VIM) (MVIM) 8
3 3

U U O(t )

U U O(t )

U U O(t )
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M

 (29) 

and Fig. 5 shows the absolute error. 
 

DISSECTION 
 
Analyzing the results obtained by VIM, it has been observed that VIM

nU  takes the following form: 

 
                               ( ) ( ) ( ) ( ) ( ) ( )s n 1 1 s n 1 1 s n 1 s n 1 s n 1 1 s n 1 10 1 2 2

n n n n n n nU B B t B t B t B t B t+ − + − + + + + + += + + + + + + +… …  (30) 

 
where m

nB  is the coefficient of tm. m
nB  is settled and takes the same value for each VIM

nU  when ( )m s n 1 1≤ + −  and is 

not settled and doesn’t take the same value for each VIM
nU  when ( )m s n 1 1> + − .  

 We can depend on the settled terms. The non-settled terms we can not depend on them which deteriorates the 
approximate series solution of the variational iteration method and consume time and effort in calculation 
 By observing the results obtained by MVIM and VIM in the illustrative examples, we found that MVIM 
eliminates all the non-settled terms in VIM. It is faster in calculations and more convergent than VIM [34,35]. 
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SUMMARY 
 
 In this work, the linear and the nonlinear Schrödinger equations, the nonlinear modified Kawahara equation and 
the nonlinear Klein-Gordon equation are efficiently handled by Modified variational iteration method. MVIM gives 
rapid convergent successive approximations and it is capable of greatly reducing the size of calculations. The MVIM 
is not faced with necessity of large computer memory and plenty time consumption like VIM. MVIM is an efficient 
method to handle nonlinear structure which gives exact series solution that converges to exact solution in the 
neighborhood of initial point.  
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