# **Coincidence Theorems on Product FC-spaces**

<sup>1</sup>Xiao-dan Wu, <sup>2</sup>Yan Wang and <sup>2</sup>Lei Wang

<sup>1</sup>Department of Economic Mathematics, South Western University of Finance and Economics, Chengdu, Sichuan 610074, PR China <sup>2</sup>College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112, PR China

**Abstract:** By applying the technique of continuous partition of unity, some new coincidence theorems for a better admissible mapping of a family of set-valued mappings defined on the product FC-spaces are proved under suitable conditions. The results presented in this paper unity and generalize some known coincidence theorems in recent literatures.

2000 MSC: 54H25 . 47H10 . 54C60

**Key words:** Better admissible mapping . coincidence theorems . FC-space

#### INTRODUCTION

In 1937, Von Neumann [1] established the famous coincidence theorem. Since then, the coincidence theorem was generalized in many directions. Browder [2] first proved some basic coincidence theorems for a pair of set-valued mappings in compact setting of topological vector spaces and gave some applications to minimax inequalities and variational inequalities. Recently, Ding [3] established some new coincidence theorems for a better admissible mapping on G-convex spaces by using the technique of a continuous partition of unity. In this paper, we will generalize these coincidence theorems on FC-spaces without convexity structure.

#### **PRELIMINARIES**

Let X and Y be two nonempty sets. We denote <X> and  $2^Y$  the family of all nonempty finite subsets of X and the family of all subsets of Y, respectively. For each A $\in$ <X>, we denote |A| the cardinality of A. Let  $\Delta_n$  be the standard n-dimentional simplex with vertices  $\{e_0, e_1, ..., e_n\}$ . If J is a nonempty subset of  $\{0,1,...,n\}$ , we denote by  $\Delta_J$  the convex hull of the vertices  $\{e_j: j\in J\}$ . A subset A of a topological space X is said to be compactly open (resp., compactly closed) in X if for each nonempty compact subset K of X, A $\cap$ K is open (resp., closed) in K. The following notions were introduced by Ding [4], For any given nonempty subset A of X, denote the compact interior and the compact closure of A, denoted by c int(A) and  $\bullet \bullet \bullet$  (A), as

 $cint(A) = \bigcup \{B \subset X : B \subset A \text{ and } B \text{ is completely open in } X\}$ 

 $ccl(A) = \bigcap \{ B \subset X : A \subset B \text{ and } B \text{ is completely closed in } X \}$ 

It is easy to see that  $c \operatorname{int}(A)$  is compactly open in X and  $\operatorname{ccl}(A)$  is compactly closed in X. It is clear that a subset A of X is compactly open (resp., compactly closed) in X if and only if  $A = c \operatorname{int}(A)$  (resp.,  $A = c \operatorname{ccl}(A)$ ).

The following notion was introduced by Ding [5].

**Definition 2.1:**  $(Y, \varphi_N)$  is said to be a finitely continuous topological space (for short, FC-space) if Y is a topological space such that for each

$$N = \{y_0, y_1, ..., y_n\} \in$$

there exists a continuous mapping  $\phi_N:\Delta_n \to Y$ . A subset D of  $(Y, \phi_N)$  is said to be an FC-subspace of Y if for each

$$N = \{y_0, y_1, \dots, y_n\} \in \langle Y \rangle$$

and for any

$$\left\{y_{_{i_{_{0}}}},y_{_{i_{_{1}}}},\ldots y_{_{i_{_{k}}}}\right\}\!\in N\cap D\,,\;\phi_{N}(\Delta_{\!K})\subset\! D$$

where

$$\Delta_{K} = c o \{e_{i_{j}} : j = 0, 1, \dots, k\}$$

It is easy to see that each FC-subspace of  $(Y,\phi_N)$  is also an FC-space.

**Definition 2.2:** Let X be a topological space and  $(Y_i, \{\phi_{N_i}\})$  be a family of FC-spaces where I is a finite or infinite index set and

$$Y = \prod_{i \in I} Y_i$$

The class B(Y, X) of better admissible mappings was introduced and defined as follows:  $T \in B(Y,X)$  if and only if T:  $Y \rightarrow 2^X$  is an upper semicontinuous set-valued mapping with compact values such that for each

$$i \in I, M_i \in \langle Y_i \rangle (|M_i| = m_i + 1)$$

and for any continuous mapping

$$\Psi:T(\prod_{i\in I}\phi_{M_i}(\Delta_{m_i}))\to D$$

the composition mapping

$$\Psi \circ T \mid_{\Pi_{i=1}\Phi_{M},(\Delta_{m.})} \circ \Phi : D \to 2^{D}$$

has a fixed point, where

$$D = \prod\nolimits_{i \in I} \Delta_{m_i}$$

$$\Phi(t) = \prod_{i \in I} \phi_{M_i}(\pi_i(t))$$

for all  $t\!\in\!D$  and  $\pi_{\!i}$  is the projection of  $\,D\!\to\!\Delta_{m_{_i}}$  .

When  $(Y, \varphi_N)$  is a G-convex space, I is a singleton, the notion of the class of better admissible mappings coincides with the corresponding notion introduced by Park [6]. The class B(Y, X) of better admissible setvalued mappings includes many important classes of set-valued mappings, for example,  $U_c^k(Y,X)$  in [7], KKM(Y,X) in [8] and A(Y,X) in [9] and so on as proper subclasses.

## COINCIDENCE THEOREMS

**Theorem 3.1:** Let X be a topological space and  $(Y_i, \{\phi_{N_i}\})$  be a family of FC-spaces where I is a finite or infinite index set. Let

$$Y = \prod_{i \in I} Y_i$$

and  $T \in B(Y,X)$ . For each  $i \in I$ , Let  $F_i, G_i : X \to 2^{Y_i}$  be two set-valued mappings such that for each  $i \in I$ , for each  $x \in X$  and

$$N_{i} = \{y_{i0}, y_{i1}, \dots y_{in_{i}}\} \in \langle F_{i}(x) \rangle, \phi_{N_{i}}(\Delta_{n_{i}}) \subset G_{i}(x)$$

for each nonempty subset K of X,

$$K = \bigcup_{y_i \in Y_i} (cintF_i^{-1}(y_i) \cap K)$$

there exists a nonempty subset  $Y_i^0$  of  $Y_i$  such that for each  $N_i \in Y_i >$ , there is a compact FC-subspace  $L_{N_i}$  of  $Y_i$  containing  $Y_i^0 \cup N_i$  and the set

$$D_i = \bigcap_{y_i \in Y^0} (cint F_i^{-1}(y_i))^c$$

is empty or compact in X, where  $(\text{cint}F_i^{-1}(y_i))^c$  denotes the complement of  $(\text{cint}F_i^{-1}(y_i))$  in X.

Then there exists  $\hat{y} \in Y$  and  $\hat{x} \in X$  such that for each  $i \in I$ ,  $\hat{x} \in T(\hat{y})$  and  $\hat{y}_i \in G(\hat{x})$ .

**Proof:** For each fixed  $i \in I$ , if

$$D_i = \bigcap_{\mathbf{y}_i \in \mathbf{Y}^0} (\operatorname{cint} F_i^{-1}(\mathbf{y}_i))^c$$

is empty in X, then

$$X = X \setminus D_i = \bigcup_{y_i \in Y^0} cint F^{-1}(y_i)$$
 (3.1)

If D is nonempty and compact, by condition (ii), we have

$$D_i = \bigcup\nolimits_{y_i \in Y_i^0} (cintF_i^{-1}(y_i) \cap D_i) \subset \bigcup\nolimits_{y_i \in Y_i^0} cintF_i^{-1}(y_i)$$

Since D<sub>i</sub> is compact, there exists a finite subset

$$N = \left\{ y_{i_0}, \ y_{i_1}, \dots y_{i_{n_i}} \right\} \in < Y_i >$$

such that

$$D_{i} = \bigcap\nolimits_{y_{i} \in Y_{i}^{0}} \left( cintF_{i}^{-1}(y_{i}) \right)^{c} \subset \bigcup\nolimits_{k=0}^{n_{i}} cintF_{i}^{-1}(y_{ik}) \, .$$

It follows that

$$X = \bigcup_{y_i \in Y_i^0} cintF^{-1}(y_i) \cup (\bigcup_{k=0}^{n_i} cintF^{-1}(y_{ik})) \tag{3.2}$$

Hence, in both cases that  $D_i$  is empty or nonempty compact, (3.2) always holds. By condition (iii), there exists a compact FC-subspace  $L_{N_i}$  of  $Y_i$  such that  $Y_i^0 \cup N_i \subset L_{N_i}$ . By (3.2), we obtain

$$X \subset \bigcup_{y_i \in L_{N_i}} cint F^{-1}(y_i)$$
 (3.3)

Let

$$L_{N} = \prod_{i \in I} L_{N_{i}}$$

Then  $L_N$  is a compact subset of Y. Since T is upper semicontinuous with compact values, by Proposition 3.1.11 of Aubin and Ekeland [10],  $T(L_N)$  is a compact subset of X. By (3.3), we have that, for each  $i \in I$ ,

$$T(L_N) \subset \bigcup_{y_i \in L_{A_i}} cint F^{-1}(y_i)$$

Thus there exists

$$M_{i} = \{z_{i0}, z_{i1}, ..., z_{im}\} \in$$

such that

$$T(L_N) = \bigcup_{i=0}^{m_i} (cintF^{-1}(y_i) \cap T(L_N))$$
 (3.4)

Since  $L_{N_i}$  is also an FC-subspace, there exists a continuous mapping  $\phi_{M_i}:\Delta_{m_i}\to Y$ , such that for each  $B_i\in < M_i>$ ,

$$\varphi_{\mathbf{M}_{i}}(\Delta_{\mathbf{J}}) \subset \mathbf{B}_{i}, |\mathbf{B}_{i}| = |\mathbf{J} + 1| \tag{3.5}$$

By (3.4), we may assume that  $\left\{\psi_{i_k}\right\}_{k=0}^{m_i}$  is a continuous partition of unity subordinated to the open covering  $\left\{\operatorname{cintF}^{-1}(y_i) \cap T(L_N)\right\}_{i=0}^{m_i}$  such that for each

$$k = 1, 2, \dots, m_i, \psi_i : T(L_N) \rightarrow [0, 1]$$

is continuous, for each  $k = 1, 2, ..., m_i$  and

$$x \in T(L_N), \psi_{i, i}(x) \neq 0 \Leftrightarrow x \in \diamondsuit \diamondsuit \diamondsuit F^{-1}(z_{i, i}) \Rightarrow z_{i, i} \in F_i(x)$$

for each

$$x \in T(L_N), \sum_{k=0}^{m_i} \psi_{i_k}(x) = 1.$$

For each ie I, define a mapping  $\psi_i: T(L_N) \to \Delta_{m_i}$  as follows: for each  $x \in T(L_N)$ ,

$$\psi_{i}(x) = \sum_{k=0}^{m_{i}} \psi_{i k}(x) e_{i k}$$

where

$$\left\{ \boldsymbol{e}_{i~k}:k=0,\!1,\!\cdots\!\boldsymbol{m}_{i}\right\}$$

are the vertices of standard  $m_i$ -dimensional simplex  $\Delta m_i$ . Then  $\psi_i$  is continuous and for each

$$x \in T(L_{_{N}}), \psi_{_{i}}(x) = \sum\nolimits_{_{_{k=0}}}^{^{m_{_{i}}}} \psi_{_{i_{_{k}}}}(x)e_{_{i_{_{k}}}}$$

where

$$J(x) = \{k \in \{0,1,\dots,m_i\} : \psi_i \neq 0\}$$

By the property (2), we have

$$\{z_{i,}: k \in J(x)\} \in \langle F_i(x) \rangle$$

By (3.5) and condition (i), we obtain that for each  $x \in T(L_N)$ ,

$$\phi_{M_i} \circ \phi_i(x) \in \phi_{M_i}(\Delta_{J(x)}) \subset \phi_{N_i} \left\{ z_{i_k} : k \in J(x) \right\} \subset G_i(x) \quad (3.6)$$

Let

$$D = \prod_{i \in I} \Delta m_i$$

define continuous mappings  $\Phi L$   $D \rightarrow L_N$  and  $\Psi : T(L_N) \rightarrow D$  as follows that for each

$$t \in D, \Phi(t) = \prod_{i \in I} \phi_{M_i}(\pi_i(t))$$

and for each

$$x\!\in T(L_{_{\mathrm{N}}}),\!\Psi(x)\!=\prod\nolimits_{_{\mathrm{i}\in\mathrm{I}}}\!\psi_{_{\mathrm{i}}}(x)$$

where  $\pi_i: D \to \Delta_{m_i}$  is projection of D onto  $\Delta_{m_i}$ . Note that for each  $i \in I, M_i \subset L_{N_i}$  and  $L_{N_i}$  is FC-subspace, we have  $\phi_{N_i}(\Delta_{m_i}) \subset L_{N_i}$  and hence

$$\prod\nolimits_{i\in I}\phi_{N_i}(\Delta_{m_i})\subset \prod\nolimits_{i\in I}L_{N_i}=L_N$$

and

$$T(\prod_{i \in I} \phi_{N_i}(\Delta_{m_i})) \subset T(L_N)$$

Then we have

$$\Psi \circ T\mid_{\Pi_{i \in I} \phi_{N_i}(\Delta_{m_i})} \circ \Phi : D \to 2^D$$

Since  $T \in B(Y,X)$ , there exists a point  $t \in D$  such that

$$t \in \Psi \circ T \mid_{\prod_{i \in I} \phi_{N_i}(\Delta_{m_i})} \circ \Phi(t)$$

Letting  $\hat{y} = \Phi(t)$ , then there exists  $\hat{x} \in T(\hat{y})$  such that

$$\hat{y} = \Phi \circ \Psi(\hat{x}) = \Phi(\prod_{i \in I} \psi_i(\hat{x})) = \prod_{i \in I} \phi_{M_i} \circ \psi_i(\hat{x})$$

It follows from (3.6) that for each

$$i \in I$$
,  $\hat{y}_i = \phi_M \circ \psi_i(\hat{x}) \in G(\hat{x})$ 

This completes the proof.

**Remark 3.1:** The condition (i) of Theorem 3.1 can be replaced by the following condition

(i) for each  $x \in X$ ,  $G_i(x)$  is a FC-subspace of Y.

**Theorem 3.2:** Let X be a topological space and  $(Y_i, \{\phi_{N_i}\})$  be a family of FC-spaces where I is a finite or infinite index set. Let

$$Y = \prod_{i \in I} Y_i$$

For each  $\not\models I$ , Let  $F_i, G_i: X \to 2^{Y_i}$  be two set-valued mappings such that for each  $i \in I$ ,

(i) for each  $x \in X$  and

$$N_i \in \langle F_i(x) \rangle, \phi_{N_i}(\Delta_n) \subset G_i(x)$$

(ii) for each nonempty subset K of X,

$$K = \bigcup_{y_i \in Y_i} (cintF_i^{-1}(y_i) \cap K)$$

(iii) There exists a nonempty subset  $Y_i^0$  of  $Y_i$  such that for each  $N_i \in <Y_i>$ , there is a compact FC-subspace  $L_{N_i}$  of  $Y_i$  containing  $Y_i^0 \cup N_i$  and the set

$$D_i = \bigcap_{y_i \in Y_i^0} (cintF_i^{-1}(y_i))^c$$

is empty or compact in X, where  $(cintF_i^{-1}(y_i))^c$  denotes the complement of  $(cintF_i^{-1}(y_i))$  in X.

Then for each continuous single-valued mapping  $T:Y \rightarrow X$ , there exists  $\hat{y} \in Y$  such that  $\hat{y}_i \in G(T(\hat{y}))$  for each  $i \in I$ .

**Proof:** By using same argument as in the proof of Theorem 3.1, we can get that

$$\Psi \circ T\mid_{\prod_{i \in I} \phi_{N:}(\Delta_{m:})} \circ \Phi : D \to D$$

is a continuous single-valued mapping. By Tychonoff's fixed point theorem, there exists a point  $t \in D$  such that

$$t \in \Psi \circ T \mid_{\prod_{i \in I} \phi_{N:}(\Delta_{m:})} \circ \Phi(t)$$

Letting  $\hat{y} = \Phi(t)$ , then we have

$$\begin{split} \hat{y} &= \Phi \circ \Psi \left( T(\hat{y}) \right) = \Phi ( \prod\nolimits_{i \in I} \psi_i \left( T(\hat{y}) \right) ) \\ &= \prod\nolimits_{i \in I} \phi_{M_i} \circ \psi_i (T(\hat{y})) \end{split}$$

It follows from (3.6) that for each

$$i \in I$$
,  $\hat{y}_i = \phi_M \circ \psi_i(\hat{x}) \in G(T(\hat{y}))$ 

**Corollary 3.1:** Let X be a topological space and  $(Y_i, \{\phi_{N_i}\})$  be a family of FC-spaces where I is a finite or infinite index set. Let

$$Y = \prod_{i=1}^{n} Y_i$$

For each  $i \in I$ , Let  $F_i, G_i: X \to 2^{Y_i}$  be two set-valued mappings such that the condition (i) and (ii) in Theorem 3.2 are satisfied. Then for any continuous single-valued mapping  $T:Y\to X$ , there exists  $\hat{y} \in Y$  such that  $\hat{y}_i \in G(T(\hat{y}))$  for each  $i \in I$ .

**Proof:** Since for each  $i \in I$ ,  $Y_i$  is a compact FC-subspace, by letting  $Y_i^0 = L_{N_i} = Y_i$ , for each  $N_i \in <Y_i>$  and  $i \in I$ , then it follows from condition (ii) that

$$X = \bigcup_{y_i \in Y_i} cint F_i^{-1}(y_i)$$

and hence for each  $i \in I$ ,

$$\begin{split} D_i &= \bigcap_{y_i \in Y_i^0} (cintF_i^{-1}(y_i))^c = \bigcap_{y_i \in Y_i} (cintF_i^{-1}(y_i))^c \\ &= X \setminus \bigcap_{v \in Y_i} cintF_i^{-1}(y_i) = \Phi \end{split}.$$

The conclusion holds by Theorem 3.2.

**Remark 3.2:** Theorem 3.1, Theorem 3.2 and Corollary 3.1 generalize Theorem 3.1, Theorem 3.2 and Corollary 3.1 in Ding [3] from G-convex space to FC-space.

When I is a singleton, from Theorem 3.1, we can obtain the following result.

**Corollary 3.2:** Let X be a topological space and  $(Y,\phi_N)$  be an FC-space. Let  $T \in B(Y,X)$  and  $F,G:X \to 2^Y$  be set-valued mappings such that for each  $x \in X$  and

$$N \in , \phi_N(\Delta_n) \subset G(x)$$

for each nonempty subset K of

$$X, K = \bigcup_{y \in Y} (cintF^{-1}(y) \cap K)$$

there exists a nonempty subset  $Y^0$  of Y such that for each  $N \in <Y>$ , there is a compact FC-subspace  $L_N$  of Y containing  $Y^0 \cup N$  and the set

$$D = \bigcap_{y \in Y^0} (cintF^{-1}(y))^c$$

is empty or compact in X, where  $(cint F^{-1}(y))^c$  denotes the complement of  $(cint F^{-1}(y))$  in X.

Then there exists  $\hat{x} \in X$  and  $\hat{y} \in Y$  such that  $\hat{x} \in T(\hat{y})$ ?  $\hat{y} \in G(\hat{x})$ .

**Remark 3.3:** Corollary 3.2 generalizes Corollary 3.2 in Ding [3] from G-convex space to FC-space.

### REFERENCES

- Von Neumann, J., 1937. Uber ein okonomsiches Gleichungssystem und Verallgemeinerinf des Browerschen Fixpunktsatzes, Ergeb Math Kolloq, 8: 73-83.
- 2. Browder, F.E., 1984. Coincidence theorems, minimax theorems and variational inequalities, Contemporary Math., 26: 67-80.

- 3. Ding, X.P., 2005. Coincidence theorems in product G-convex Spaces. Acta. Math. Sci., 25: 401-407.
- 4. Ding, X.P., 1995. New HKKM theorems and their applications to geometric property, coincidence theorems, minimax inequality and maximal elements. Indian J. Pure Appl. Math., 26 (1): 1-19.
- 5. Ding, X.P., 2005. System of coincidence theorems in product topological spaces and application. Appl. Math. Mech., 12: 1547-1555.
- Park, S. and H. Kim, 2000. Fixed points of admissible maps on generalized convex spaces. J. Korea. Math. Soc., 37: 885-899.
- Park, S. and H. Kim, 1997. Foundations of the KKM theory on generalized convex spaces. J. Math. Anal. Appl., 209: 551-571.
- 8. Chang, T.H. and C.L. Yen, 1996. KKM property and fixed point theorems. J. Math. Anal. Appl., 203: 224-235.
- Ben- El- Mechaiekh, H., S. Chebbi, M. Florenxano and J. Linares, 1998. Abstract convexity and fixed points. J. Math. Anal. Appl., 222: 138-151.
- 10. Aubin, J.P. and I. Ekeland, 1984. Applied Nonlinear Analysis. John Eiley and Sons.