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INTRODUCTION 

 
 In 1937, Von Neumann [1] established the famous 
coincidence theorem. Since then, the coincidence 
theorem was generalized in many directions. Browder 
[2] first proved some basic coincidence theorems for a 
pair of set-valued mappings in compact setting of 
topological vector spaces and gave some applications to 
minimax inequalities and variational inequalities. 
Recently, Ding [3] established some new coincidence 
theorems for a better admissible mapping on G-convex 
spaces by using the technique of a continuous partition 
of unity. In this paper, we will generalize these 
coincidence theorems on FC-spaces without convexity 
structure. 
 

PRELIMINARIES 
 
 Let X and Y be two nonempty sets. We denote 
<X> and 2Y the family of all nonempty finite subsets of 
X and the family of all subsets of Y, respectively. For 
each A∈<X>, we denote |A| the cardinality of A. Let ∆n 
be the standard n-dimentional simplex with vertices 

0 1 n{e , e , e }…n . If J is a nonempty subset of {0,1,…,n}, 

we denote by ∆J the convex hull of the vertices {ej: 
j∈J}. A subset A of a topological space X is said to be 
compactly open (resp., compactly closed) in X if for 
each nonempty compact subset K of X, A∩K is open 
(resp., closed) in K. The following notions were 
introduced by Ding [4], For any given nonempty subset 
A of X, denote the compact interior and the compact 
closure of A, denoted by c int(A) and (A)nnn , as  

{ }cint(A) B X : B A and B is completely open in X= ⊂ ⊂∪  

 
{ }ccl(A) B X : A B and B is completely closed in X= ⊂ ⊂∩  

 
 It  is  easy  to  see  that  c int(A) is compactly open 
in  X  and  ccl(A) is compactly closed in X. It is clear 
that a subset A of X is compactly open (resp., 
compactly closed) in X if and only if A = c int (A) 
(resp., A = c ccl (A)). 
The following notion was introduced by Ding [5]. 
 
Definition 2.1: (Y, ϕN) is said to be a finitely 
continuous topological space (for short, FC-space) if Y 
is a topological space such that for each  
 

{ }0 1 nN y , y , ,y Y= … ∈< >  

 
there exists a continuous mapping ϕN:∆n→Y. A subset 
D of (Y, ϕN) is said to be an FC-subspace of Y if for 
each  
 

{ }0 1 nN y , y , ,y Y= … ∈< >  

and for any  
 

{ }
0 1 ki i iy ,y , y N D… ∈ ∩ , N K( ) Dϕ ∆ ⊂  

where  

{ }jK ico (e : j 0,1, ,k )∆ = = L  

 
 It is easy to see that each FC-subspace of (Y, ϕN) is 
also an FC-space. 
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Definition 2.2: Let X be a topological space and 

{ }( )i N iY , ϕ  be a family of FC-spaces where I is a finite 

or infinite index set and  
 

ii I
Y Y

∈
= ∏  

 
 The class B(Y, X) of better admissible mappings 
was introduced and defined as follows: T∈B(Y,X) if 
and only if T: Y→2X is an upper semicontinuous set-
valued mapping with compact values such that for each  
 

i i i ii I ,M Y ( M m 1)∈ ∈< > = +  

 
and for any continuous mapping  
 

i iM mi I
:T( ( )) D

∈
Ψ ϕ ∆ →∏  

 
the composition mapping  
 

M mi I i i

D
( )T | : D 2

∈ ϕ ∆∏Ψ Φ →o o  

 
has a fixed point, where  
 

imi I
D

∈
= ∆∏  

 

iM ii I
(t) ( (t))

∈
Φ = ϕ π∏  

 

for all t∈D and πi is the projection of 
imD → ∆ . 

 When (Y, ϕN) is a G-convex space, I is a singleton, 
the notion of the class of better admissible mappings 
coincides with the corresponding notion introduced by 
Park [6]. The class B(Y, X) of better admissible set-
valued mappings includes many important classes of 
set-valued mappings, for example, k

cU (Y,X)  in [7], 

KKM(Y,X) in [8] and A(Y,X) in [9] and so on as 
proper subclasses. 
 

COINCIDENCE THEOREMS 
 
Theorem 3.1: Let X be a topological space and 

{ }
ii N(Y, )ϕ  be a family of FC-spaces where I is a finite 

or infinite index set. Let  
 

ii I
Y Y

∈
= ∏  

 

and T∈B(Y,X). For each i∈I, Let iY
i iF,G : X 2→  be two 

set-valued mappings such that for each i∈I, for each 
x∈X and 
 

{ }
i i ii i0 i1 in i N n iN y ,y , y F(x) , ( ) G (x)= ∈< > ϕ ∆ ⊂L  

 
for each nonempty subset K of X,  
 

i i

1
y Y i iK (cintF ( y ) K)−

∈= ∩∪  

 
there exists a nonempty subset 0

iY  of Yi such that for 

each Ni∈Yi>, there is a compact FC-subspace 
iNL  of Yi 

containing 0
i iY N∪  and the set  

 
0

i i

1 c
i i iy YD (cintF (y))−

∈= ∩  

 
is empty or compact in X, where 1 c

i i(cintF (y))−  denotes 

the complement of 1
i i(cintF (y))−  in X. 

 Then there exists ŷ Y∈  and x̂ X∈  such that for 
each i∈I, ˆ ˆx T(y)∈  and i iˆ ˆy G(x).∈  

 
Proof: For each fixed i∈I , if  
 

0
i i

1 c
i i iy YD (cintF (y))−

∈= ∩  

 
is empty in X, then 
 
                    0

i i

1
i iy Y

X X \ D cintF ( y )−
∈

= = ∪  (3.1) 

 
 If Di is nonempty and compact, by condition (ii), 
we have 
 

0 0
i i i i

1 1
i i i i i iy Y y YD (cintF ( y ) D ) cintF ( y )− −

∈ ∈= ∩ ⊂∪ ∪  

 
Since Di is compact, there exists a finite subset  
 

{ }
ii 0 i1 in iN y , y , y Y= … ∈< >  

 
such that 
 

i
0

i i

n1 c 1
i i i k 0 i iky YD (cintF (y) ) cintF (y )− −

=∈= ⊂∩ ∪ . 

 
It follows that 
 
            i

0
i i

n1 1
i k 0 iky YX cintF ( y ) ( cintF (y ))− −

=∈= ∪∪ ∪  (3.2) 

 
 Hence, in both cases that Di is empty or nonempty 
compact, (3.2) always holds. By condition (iii), there 
exists a compact FC-subspace 

iNL of Yi such that 

i

0
i i NY N L∪ ⊂ . By (3.2), we obtain 

 
                       

i Ni

1
y L iX cintF ( y )−

∈⊂ ∪  (3.3) 

Let  
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iN Ni I
L L

∈
= ∏  

 
 Then LN is a compact subset of Y. Since T is upper 
semicontinuous with compact values, by Proposition 
3.1.11 of Aubin and Ekeland [10], T(LN) is a compact 
subset of X. By (3.3), we have that, for each i∈I, 
 

i N i

1
N y L iT(L ) cintF ( y )−

∈⊂ ∪  

 
Thus there exists  
 

{ }
i ii i0 i1 im NM z ,z , z L= … ∈< >  

such that 
 
                 im 1

N i 0 i NT(L ) (cintF ( y ) T(L ))−
== ∩∪  (3.4) 

 
 Since 

iNL is also an FC-subspace, there exists a 

continuous mapping 
i iM m: Yϕ ∆ → ,such that for each 

i iB M∈< > , 

 
                      

iM J i i( ) B , B J 1ϕ ∆ ⊂ = +  (3.5) 

 

 By (3.4), we may assume that { } i

k

m

i k 0=
ψ  is a 

continuous partition of unity subordinated to the open 

covering { } im1
i N i 0

cintF ( y ) T(L )−

=
∩  such that for each  

 
[ ]

ki i Nk 1,2, , m , :T(L ) 0,1= ψ →L  

 
is continuous,  
for each k = 1,2,…,mi and  
 

k k k

1
N i i i ix T(L ), (x) 0 x F (z ) z F(x)−∈ ψ ≠ ⇔ ∈ ⇒ ∈nnnn  

 
for each  

i

k

m

N ik 0
x T(L ), (x) 1

=
∈ ψ =∑ . 

 
 For each i∈I, define a mapping 

ii N m:T(L )ψ → ∆ as 

follows: for each x∈T(LN), 
 

im

i i k i kk 0
(x) (x)e

=
ψ = ψ∑  

where  

{ }i k ie : k 0,1, m= L  
 
are the vertices of standard mi-dimensional simplex 
∆mi. Then ψi is continuous and for each  
 

i

k k

m

N i i ik 0
x T(L ), (x) (x)e

=
∈ ψ = ψ∑  

 
where  

{ }{ }
ki iJ(x) k 0,1, ,m : 0= ∈ ψ ≠L  

 
By the property (2), we have  
 

{ }
ki iz : k J(x) F(x)∈ ∈< >  

 
 By (3.5) and condition (i), we obtain that for each 
x∈T(LN), 
 
  { }

i i i kM i M J(x) N i i(x) ( ) ( z : k J(x) ) G (x)φ ϕ ∈φ ∆ ⊂ ϕ ∈ ⊂o  (3.6) 

 
Let  

ii I
D m

∈
= ∆∏  

 
define continuous mappings ΦL D→LN and 

N:T(L ) DΨ →  as follows that for each  

 

iM ii I
t D, (t) ( (t))

∈
∈ Φ = ϕ π∏  

 
and for each  
 

N ii I
x T(L ), (x) (x)

∈
∈ Ψ = ψ∏  

 
where 

ii m: Dπ → ∆  is projection of D onto 
im∆ . Note 

that for each 
ii Ni I ,M L∈ ⊂  and 

iNL is FC-subspace, we 

have 
i i iN m N( ) Lϕ ∆ ⊂  and hence  

 

i i iN m N Ni I i I
( ) L L

∈ ∈
ϕ ∆ ⊂ =∏ ∏  

and  

i iN m Ni I
T( ( )) T(L )

∈
ϕ ∆ ⊂∏  

 
Then we have  
 

N mi I i i

D
( )T | : D 2

∈ ϕ ∆∏Ψ Φ →o o  

 
Since T∈B(Y,X), there exists a point t∈D such that  
 

N mi I i i
( )t T | (t)

∈ ϕ ∆∏∈ Ψ Φo o  

 
Letting ŷ (t)= Φ , then there exists )ˆ(ˆ yTx ∈  such that  

 
ii M ii I i I

ˆ ˆ ˆ ˆy (x) ( (x)) (x)
∈ ∈

= Φ Ψ = Φ ψ = ϕ ψ∏ ∏o o  

 
It follows from (3.6) that for each  
 

i∈I, 
ii M i iˆ ˆ ˆy (x) G(x)= ϕ ψ ∈o  
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This completes the proof. 
 
Remark 3.1: The condition (i) of Theorem 3.1 can be 
replaced by the following condition  
 
(i) for each x∈X, Gi(x) is a FC-subspace of Y. 
 
Theorem 3.2: Let X be a topological space and 

{ }
ii N(Y, )ϕ  be a family of FC-spaces where I is a finite 

or infinite index set. Let  
 

ii I
Y Y

∈
= ∏  

 
 For each i∈I, Let iY

i iF,G : X 2→  be two set-valued 

mappings such that for each i∈I, 
 
(i) for each x∈X and 
 

i ii i N n iN F(x) , ( ) G (x)∈< > ϕ ∆ ⊂  

 
(ii) for each nonempty subset K of X,  
 

i i

1
y Y i iK (cintF ( y ) K)−

∈= ∩∪  

 
(iii) There exists a nonempty subset 0

iY  of Yi such that 
for each i iN Y∈< > , there is a compact FC-

subspace 
iNL  of Yi containing 0

i iY N∪  and the set  

 
0

i i

1 c
i i iy YD (cintF (y))−

∈= ∩  

 
is empty or compact in X, where 1 c

i i(cintF (y))−  denotes 

the complement of 1
i i(cintF (y))−  in X. 

 Then for each continuous single-valued mapping 
T:Y→X, there exists ŷ Y∈ such that i iˆ ˆy G(T(y))∈  for 

each i∈I. 
 
Proof: By using same argument as in the proof of 
Theorem 3.1, we can get that  
 

N mi I i i
( )T | : D D

∈ ϕ ∆∏Ψ Φ →o o  

 
is a  continuous  single-valued  mapping. By 
Tychonoff’s  fixed  point  theorem,  there  exists  a  
point t∈D such that  
 

N mi I i i
( )t T | (t)

∈ ϕ ∆∏∈ Ψ Φo o  

 
Letting ŷ (t)= Φ , then we have  

 

i

ii I

M ii I

ˆ ˆ ˆy (T(y)) ( (T(y)))

ˆ(T(y))
∈

∈

= Φ Ψ = Φ ψ

= ϕ ψ

∏
∏

o
o

. 

 
It follows from (3.6) that for each  
 

ii M i iˆ ˆ ˆi I , y (x) G(T(y))∈ = ϕ ψ ∈o  

 
Corollary 3.1: Let X be a topological space and 

{ }
ii N(Y, )ϕ  be a family of FC-spaces where I is a finite 

or infinite index set. Let  
 

ii I
Y Y

∈
= ∏  

 
 For each i∈I, Let iY

i iF,G : X 2→  be two set-valued 
mappings such that the condition (i) and (ii) in Theorem 
3.2 are satisfied. Then for any continuous single-valued 
mapping T:Y→X, there exists ŷ Y∈ such that 

i iˆ ˆy G(T(y))∈ for each i∈I. 

 
Proof: Since for each i∈I, Yi is a compact FC-
subspace, by letting 

i

0
i N iY L Y ,= =  for each i iN Y∈< >  

and i∈I, then it follows from condition (ii) that  
 

i i

1
y Y i iX cintF (y )−

∈= ∪  

 
and hence for each i∈I, 
 

0 i ii i

i i

1 c 1 c
i i i y Y i iy Y

1
y Y i i

D (cintF (y )) (cintF (y ))

X \ cintF ( y )

− −
∈∈

−
∈

= =

= = Φ

∩ ∩
∩

. 

 
The conclusion holds by Theorem 3.2. 
 
Remark 3.2: Theorem 3.1, Theorem 3.2 and Corollary 
3.1 generalize Theorem 3.1, Theorem 3.2 and Corollary 
3.1 in Ding [3] from G-convex space to FC-space.  
 When I is a singleton, from Theorem 3.1, we can 
obtain the following result. 
 
Corollary  3.2: Let X be a topological space and 
(Y,ϕN) be an FC-space. Let T∈B(Y,X) and 

YF,G:X 2→  be  set-valued  mappings  such  that  for 

each x∈X and  
 

N nN F(x) , ( ) G(x)∈< > ϕ ∆ ⊂  
 
for each nonempty subset K of  
 

1
y YX, K (cintF (y) K)−

∈= ∩∪  
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there exists a nonempty subset Y0 of Y such that for 
each N∈<Y>, there is a compact FC-subspace LN of Y 
containing Y0∪N and the set  
 

0
1 c

y YD (cintF (y))−
∈= ∩  

 
is empty or compact in X, where 1 c(cintF (y))−  denotes 
the complement of 1(cintF (y))−  in X. 
 Then there exists x̂ X∈ and ŷ Y∈ such that 
ˆ ˆx T(y)∈ ? ˆ ˆy G(x).∈  

 
Remark 3.3: Corollary 3.2 generalizes Corollary 3.2 in 
Ding [3] from G-convex space to FC-space.  
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