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Abstract: By applying the technique of continuous partition of unity, some new coincidence theorems for a
better admissible mapping of a family of set-valued mappings defined on the product FC-spaces are proved
under suitable conditions. The results presented in this paper unity and generalize some known coincidence

theoremsin recent literatures.
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INTRODUCTION

In 1937, Von Neumann [1] established the famous
coincidence theorem. Since then, the coincidence
theorem was generalized in many directions. Browder
[2] first proved some basic coincidence theorems for a
pair of set-valued mappings in compact setting of
topological vector spaces and gave some applications to
minimax inequalities and variational inequalities.
Recently, Ding [3] established some new coincidence
theorems for a better admissible mapping on G-convex
spaces by using the technique of a continuous partition
of unity. In this paper, we will generalize these
coincidence theorems on FC-spaces without convexity
structure.

PRELIMINARIES

Let X and Y be two nonempty sets. We denote
<X> and 2" the family of all nonempty finite subsets of
X and the family of all subsets of Y, respectively. For
each AT <X>, we denote |A| the cardinality of A. Let D,
be the standard n-dimentional simplex with vertices
{e, e Ya®e}. If Jis anonempty subset of {0,1,...,n},

we denote by D; the convex hull of the vertices {g:
i1 J}. A subset A of atopological space X is said to be
compactly open (resp., compactly closed) in X if for
each nonempty compact subset K of X, ACK is open
(resp., closed) in K. The following notions were
introduced by Ding [4], For any given nonempty subset
A of X, denote the compact interior and the compact
closure of A, denoted by cint(A) and @& (A), as

cint(A)=U{B 1 X:BI A andB iscompletely openin X}
ccl(A)=N{B 1 X:Al BandB iscompletely closedin X}

It is easy to see that cint(A) iscompactly open
in X and ccl(A) is compactly closed in X. It is clear
that a subset A of X is compactly open (resp.,
compactly closed) in X if and only if A = cint (A)

(resp., A =cccl (A)).
The following notion wasintroduced by Ding [5].

Definition 2.1: (Y, jn) is sad to be a finitely
continuous topological space (for short, FC-space) if Y
isatopological space such that for each

N={y, y,. Y.y }T<Y >

there exists a continuous mapping j n:Dy® Y. A subset

D of (Y, jn) is said to be an FC-subspace of Y if for
each

N :{yev yvl/“vyn}i <Y>
and for any

{V, ¥, ¥y, }INGD,j (D)1 D
where
D, :co{ei] 0 :O,1,~--,k})

It is easy to see that each FC-subspaceof (Y, n) is
also an FC-space.
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Definition 2.2: Let X be a topological space and
(Y,{i v}) beafamily of FC-spaces where | is a finite
or infinite index set and

Y:OiHY‘

The class B(Y, X) of better admissible mappings
was introduced and defined as follows: T B(Y X) if

and only if T: Y® 2° is an upper semicontinuous set-
valued mapping with compact val ues such that for each

iT LM <Y, >(M|=m, +1)
and for any continuous mapping
Y:T(O 0w (0,))@ D
the composition mapping

Y OTl(j.

i m; (Dm;

yoF:D® 2°

has afixed point, where

~

D:Oiile|
FO=0,iu0®0)

foraltl D andp isthe projectionof D® D,, .

When (Y, j ) is a Gconvex space, | is a singleton,
the notion of the class of better admissible mappings
coincides with the corresponding notion introduced by
Park [6]. The class B(Y, X) of better admissible set-
valued mappings includes many important classes of
set-valued mappings, for example, U(Y,X) in [7],
KKM(Y,X) in [8] and A(Y,X) in [9] and so on as
proper subclasses.

COINCIDENCE THEOREMS

Theorem 3.1: Let X be a topological space and
(Yi,{j N‘}) be a family of FC-spaces where | is a finite
or infiniteindex set. Let

Y:OiHY‘

and T B(Y,X). For each il I, Let F,G: X ® 2" be two

set-valued mappings such that for each i I, for each
X X and

N, ={Yio Y ¥in T <F0 > (D) T G(X)
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for each nonempty subset K of X,
K=U,;y, (cintF*(y) C K)

Y?° of Y; such that for

there exists a nonempty subset
each NI Y;>, there is a compact FC-subspace L, ofY;
containing YE N, and the set

D, =N, o (CintF (y))°

is empty or compact in X, where (cintF*(y))°¢ denotes
the complement of (cintF*(y)) inX.

Then there exists y1 Y and %1 X such that for
eachil I, X1 T(9) and §,T G(x).

Proof: For each fixedil I, if
D =M, o (c Nt (y))°
isempty in X, then
X=X\D,=U,

cintF*(y) (31

iye

If O is nonempty and compact, by condition (ii),
we have

D, =U,; v (CintF(Y)C D)1 U, wcintF(y)
Since D; is compact, there exists a finite subset
N :{yio, Y, Ya ym‘}i <Y, >

such that

Dy =N,; e (CINtF (y))° T UiocintF (y) -
It follows that

X=U,;yoCi ntF*(y) E (Up_.cintF(y,)) (32
Hence, in both cases that D; is empty or nonempty

compact, (3.2) aways holds. By condition (iii), there
exists a compact FC-subspace L, of Y; such that

Y'EN I L, .By(3.2), weobtan

X1 U, ;. cintFi(y) (33

Wl Ly,

Let
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LN:Oﬂ|LN‘

Then Ly is acompact subset of Y. Since T is upper
semicontinuous with compact values, by Proposition
3.1.11 of Aubin and Ekeland [10], T(Ly) is a compact

subset of X. By (3.3), we have that, for eachil |,

T(LW) T Uy, cintFi(y)
Thus there exists

M, :{zio,zil,%zim}T <Ly >

such that

T(L,) =UD (cintF*(y) CT(L,)) (34

Since L, is also an FC-subspace, there exists a
continuous mapping j ,, :D,, ® Y ,such that for each
BT <M >,

jw©,)1 B,B|=[d+1 (35)

By (3.4), we may assume that {yik}:'zo is a
continuous partition of unity subordinated to the open

mj
i=

covering {cintF*(y) G (L)} , such that for each
k=12,-,m.y, T(L,)® [0]

i's continuous,
foreachk=1,2,....my and

xT T(Ly)y, (x)* 00 x1 @9eeF'(z )P 7 1 F(x)

for each
xT (LY. Y, (%) =1.

For each il |, define a mapping y,:T(L,)® D, as

follows: for each XI T(Ly),

y.(x)= é:;OYi (8
where
{eik :k:O,l,---mi}

are the vertices of standard m-dimensional simplex
Dm. Theny; is continuous and for each

xT Ty () =4y, e,
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where

3x) ={kT {o1--,m}:y, * 0
By the property (2), we have
‘[Zik ki1 J(X)}T < Fl(x) >

By (3.5) and condition (i), we obtain that for each
X T(Lw),

fo o0 00T fy Dy) 1§ 4 {2, KT JODT G,(x) (36)

Let
D:OiMDm

define continuous mappings FL D®Ly and

Y :T(L,) ® D asfollowsthat for each

T D.FO=0,,iuPE®)
and for each
xT TLY.Y =0, y,(x)

where p:D® D, is projection of D onto D, . Note
that for each il I,M1 L, and L, is FC-subspace, we
have j , (D,) I L, andhence

O,inv®@)1 O, Ly=L,
and .
T(O,,in, (BT T(Ly)
Then we have

Y oT| oF :D® 2°

10 it i i (Pr;)
Since TT B(Y,X), there existsapoint ti D such that

th YoTls oF (t)

i 1] nj (D)
Letting § =F(t), then thereexists X1 T (¥) such that
g=F Y ®=FO,y @) =0,y ®

It follows from (3.6) that for each

L 9=y oy, ()T G(X)
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This completes the proof.

Remark 3.1: The condition (i) of Theorem 3.1 can be
replaced by the following condition

(i) foreachxl X, G(x)isaFC-subspaceof Y.

Theorem 3.2: Let X be a topological space and
(Yi,{j N‘}) be a family of FC-spaces where | is a finite
or infiniteindex set. Let

~

Y=0,Y

For each il I, Let F,G;: X ® 2" be two set-valued
mappings such that for eachiiT |,
(i) foreachxi X and

N, T <F(x)>j (D) 1 G(x)
(i) for each nonempty subset K of X,
K=U,y, (cintF(y) C K)

(iii) There exists a nonempty subset Y, of Y; such that
for each N, 1<Y, >, there is a compact FC-

subspace L,, of Y; containing Y°E N, and the set
D, =N, 1 o (CintF ' ())°

is empty or compact in X, where (cintF*(y))¢ denotes
the complement of (cintF(y)) inX.

Then for each continuous single-valued mapping
T.Y® X, there exists y1 Y such that §,1 G(T(y)) for

eachil I.

Proof: By using same argument as in the proof of
Theorem 3.1, we can get that

YoTl, .o, °F:D®D

is a continuous single-valued mapping. By
Tychonoff's fixed point theorem, there exists a

point tT D such that

thyoTls,

i 1) ni (Pmy)

oF(t)

Letting y =F(t), then we have
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§=FoY @@ =F©D, y, T
=0, v ey (TE) '

It follows from (3.6) that for each
iT1,9 =] ey (0T G(T(Y)

Corollary 3.1: Let X be a topological space and
(Yi,{j N‘}) be a family of FC-spaces where | is afinite
or infinite index set. Let

~

Y OiilYi

For each il |, Let F,G;: X ® 2" be two set-valued
mappings such that the condition (i) and (ii) in Theorem
3.2 are satisfied. Then for any continuous single-valued

mapping T:Y® X, there exists §1 Y such that
9.1 G(T(y)) for eachil I.
Proof: Since for each il l, Y, is a compact FC-

subspace, by letting Y°=L, =Y, foreach Ni<Y, >

and il 1, then it follows from condition (ii) that

X= Uv,i Y, cintF(y,)
and hence for eachil 1,

D = ﬂyli Y (ci ntFi-l(yi))c = my.i Y, (cintF’ 1(Yi))C
=X\, CintF (y)=F '

The conclusion holds by Theorem 3.2.

Remark 3.2: Theorem 3.1, Theorem 3.2 and Corollary
3.1 generalize Theorem 3.1, Theorem 3.2 and Corollary
3.1in Ding [3] from G-convex space to FC-space.

When | is a singleton, from Theorem 3.1, we can
obtain the following result.

Corollary 3.2 Let X be a topological space and
(Yjn) be an FC-space. Let TiB(Y,X) and
F.G:X ® 2" be set-valued mappings such that for

eachxi X and
NT <F(x)>,j (D) T G(x)
for each nonempty subset K of

X, K =Uy;, (cintF(y) G K)
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there exists a nonempty subset Y° of Y such that for
each NI <Y>, there is a compact FC-subspace Ly of Y
containing Y°EN and the set

D =M, v (cintF (y))°

is empty or compact in X, where (cintF'(y))° denotes
the complement of (cintF*(y)) in X.

Then there existski Xandyl Y such
X1 7(9)? 91 GX).

that

Remark 3.3: Corollary 3.2 generalizes Corollary 3.2 in
Ding [3] from G-convex space to FC-space.
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