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Abstract: This paper suggested a new method for constricting a new exact travelling wave solution 
nonlinear physical equations. A transformation and a general function for travelling wave are introduced, 
using the Maple, a general exact solution can be readily obtained. By suitable choice of the parameters, the 
obtained solution reduces to various solitary and periodic solutions. The generalized regularized long-wave 
equation, Camassa-Holm equation, nonlinear Fokker-Planck equation, generalized Burgers-Fisher equation 
are used as illustrative examples to show the effectiveness and convenience of the method. The proposed 
method can be used to solve another nonlinear physics problems. 
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INTRODUCTION 

 
 As more and more problems in branches of modern 
mathematics, physics and other interdisciplinary 
science are described in terms of suitable nonlinear 
models, directly exploring explicit and exact solutions 
to nonlinear evolution equations plays a very important 
role in nonlinear science, particularly in nonlinear 
physics science. In the past several decades, both 
mathematicians and physicists have made significant 
progress in this direction. 
 Many effective methods [1-13] have been 
presented such as variational iteration method [6], 
homotopy perturbation method [3], Exp -function 
method [13] and others. A complete review on the field 
is available on [3]. 
 In this paper, by introducing a transformation and 
selecting appropriate, we successfully find rich explicit 
and exact solutions of four famous and physically 
important nonlinear evolution equations namely, the 
generalized regularized long-wave (RLW) equation, the 
Camassa-Holm equation, nonlinear Fokker Planck (FP) 
equation and the generalized Burgers-Fisher equation 
 The rest of this paper is arranged as follows. In 
Section 2, we briefly describe the proposed method. In 
Section 3, as illustrative examples, we apply it to 

solving four physically significant nonlinear evolution 
equations. Some conclusion are given in the last 
section. 
 

METHODOLOGY 
 
 For a given the nonlinear evolution equations, say, 
in two independent variables x and t  
 

                 
2 2

2 2

u u u u
Q(u, , , , ,.....) 0

t x t x
∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂

 (1) 

 
 The left hand side of Eq.(1) is a polynomial in 
terms of u and its various partial derivatives. In order to 
solve Eq.(1), we use the transformation  
 

        0

v l n w
u u , v ,w w(y),y y(x,t)

x x
∂ ∂

= + = = =
∂ ∂

 (2) 

 
in which w(y) and y(x,t) are two functions. 
 
 It is known that Eq.(1) are nonlinear equation and 
that their solutions should contain the phase fracture 
(kx-wt).As a result, we straightforwardly choose the 
trial function y(x,t) in the following form 
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                                  (kx wt)y e −=  (3) 
 
where k and w are the wave number and the angular 
frequency, respectively. 
We Suggest another function w(y) as: 
 
                              2 nw(y) [a y ]= +  (4) 
 
where a and n are constants to be determined later. 
 In view of Eq.(2) along with Eq.(3) as well as 
Eq.(4), we have 
 

                         
2

2

lnw 2nkyv
x [a y ]

∂= =
∂ +

 (5) 

 

                    
2 2

0 0 2 2

v 4ank yu u u
x [a y ]

∂= + = +
∂ +

 (6) 

 
 In what follows, let us describe the proposed 
method as follows. Firstly, substituting the above 
equations into Eq.(1) yields a set of algebraic equations 
with regard to the unknown variables n and a and 
equating the coefficients of all power of y to zero. 
Secondly, by solving the obtained system of algebraic 
equation for n and a with the aid of Maple, we obtain 
the unknown constants n and a. Lastly, inserting n into 
Eq.(6) and using Eq.(3) along with choosing a = 1 and a 
= -1, respectively, then many new exact travelling wave 
solution are obtained. In the following, we shall apply 
the technique stated above to solve four physically 
important nonlinear evolution equations as illustrative 
examples. 
 

NEW APPLICATIONS 
 
The generalized regularized long-wave (RLW) 
equation: Let us first consider the generalized 
regularized long-wave equation [14] reads 
 
                       p

t x x xxtu u ( u ) u 0+ + α − β =  (7) 
 
where p is  a positive integer and α and β are positive 
constants. Eq.(7) was first put forward as a model for 
small amplitude long waves on the surface of water in a 
channel by Peregine [15, 16] and later by Benjamin 
[17]. In physical situation such as unidirectional waves 
propagating in a water channel, long crested waves in 
near shore zones and many other, the generalized long 
wave (RLW) equation serves an alternative model to 
the KdV equation [18]. 
 Our main goal is to solve Eq.(7) by means of the 
proposed method illustrated above. Substituting Eqs. 
(3-6)  into  Eq. (7)  and  collecting   the   coefficients  of  

 
powers of y with the aid of the computerized symbolic 
computation of the powerful Maple, then setting each 
of the obtained coefficients to zero, give rise to a set of 
algebraic equations with respect to the unknown 
variables a and n as follows: 
 
  2 2 2 2 2 3 2 2

08nk a[wa a k 2 k u a 8 na k 44 wa k ] 0− − − α − α + β =  

  2 3 2
08nk a[ wa ka 2 k u a 8 nak 44 wak ] 0− − + + α + α − β =  

  2 2
08nk a[ w k 2 ku 4 wk ] 0− − + + α + β =  (8) 

 
In view of Eqs.(8), we have 
 

          
2

0

6w 1 w k 4 wk
a a,n , u

k 2 k
β − + + β

= = = −
α α

 (9) 

 

                                    
w

c
k

=  (10) 

 
 Inserting Eq.(9) into Eq.(6) and taking into account 
Eq.(3) and Eq.(10) simultaneously, we obtain the 
general travelling wave solution the regularized long-
wave equation (7) as follows 
 

      
2 2 k ( x c t )

2k(x ct) 2

1 w k 4 wk 24kw aeu(x,t)
2 k (a e )

−

−

− + + β β= − +
α α +

 (11) 

 
where three arbitrary constants a, w and k. 
Making use of the following identity 
 

                             
x

2x

e 1
sechx

e 1 2
=

+
 (12) 

 
and setting a = 1 in Eq.(11),we get the so-called bell-
type solitary wave solution to the regularized long-
wave Eq.(7) in the following form 
 

   
2

21 w k 4 wk 6w k
u(x,t) sechk(x ct)

2 k
− + + β β

= − + −
α α

 (13) 

 
Making use of the following identity 
 

                               
x

2x

e 1
cschx

e 1 2
=

−
 (14) 

 
and setting a = -1 in Eq.(11), we have the singular 
travelling wave solution to regularized long-wave 
equation (7) as follows 
 

  
2

21 w k 4 wk 6w k
u(x,t) csch k ( x ct)

2 k
− + + β β

= − − −
α α

 (15) 

 
Making use of the following identity 
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                   2 2
sech x

cosh2x 1
=

+
 (16) 

 
then Eq.(13) admits to the following 
 

21 w k 4 wk 12wk 1u(x,t)
2 k cosh2k(x ct) 1

− + + β β=− +
α α − +

(17)  

 
Making use of the following identity 
 

                          2 2
csch x

cosh2x 1
=

−
 (18) 

 
then Eq.(15) can be converted to 
 

21 w k 4 wk 12wk 1u(x,t)
2 k cosh2k(x ct) 1

− + + β β=− −
α α − −

 (19) 

 
 Let k = iK, where i is the imaginary unit and K the 
constant and making use of the following identity 
 
             sech(ix) sec(x),csch(ix) icsc(x)= = −  (20) 

 
then Eq.(8) and Eq.(15) can be reduced to 
 

2
21 w iK 4 wK 12iKw

u(x,t) sec K(x ct)
2 iK

− + − β β
= − + −

α α
 (21) 

 
2

21 w iK 4 wK 12iKw
u(x,t) csc K(x ct)

2 iK
− + − β β

= − + −
α α

 (22) 

 
which are two triangle function-type periodic wave 
solutions  of  the  regularized  long-wave (RLW) 
equation (7). 
 
Camassa-Holm equation: A second interactive model 
is  the Camassa-Holm equation [19] reads 
 
            t x xxt x x xx xxxu 2pu u 3uu 2 u u uu+ − + = +  (23) 
 
 Eq.(23) appeared first in a physical context as 
describing the shallow water approximation in invisible 
hydrodynamics [20, 21]. The variable u(x,t) represents 
the fluid velocity in the horizontal direction x and p is a 
constant. 
 In the same manner, to solve Eq. (23) using the 
proposed method. Similarly, putting Eqs. (3-6) into Eq. 
(23) and collecting the coefficients of powers of y with 
the aid of the computerized symbolic computation of 
the powerful Maple, then setting each of the obtained 
coefficients to zero, results in a system of over-
determined algebraic equations with regard to the 
unknown variables a and n as: 

 

        

2 3 2
0 0

2 3 2 3
0

3 5
0

2 2 3 2 2 2 2 3
0

2 2 5 2
0

8nk a[ w 2pk 4 k u 4wk 3ku ] 0

8nk aa[36au k 6pka 36wak 12nak

9nak 9kau 48nak 3wa] 0

8nk a[40a u k 4pa k 40k wa 12a nk

6ku a 336na k 2wa ] 0

− − + − + + =

− + − +

+ + − − =

− + − +

+ + − =

 (24) 

 
 Solving the system of algebraic equations obtained 
above using Maple, we have 
 

                  
2 4

2

0 2

8(w pk)
a a,n ,

k( 16k 3 16k )

w 2pk 4wk wu ,c
k(4k 3) k

+
= =

− + +

− + += =
−

 (25) 

 
 Inserting Eq.(25) into Eq.(6) and making use of 
Eq.(3), admits the following the general travelling wave 
solution to the Camassa-Holm equation (23) 
 

           

2

2

2k(x ct)
2

2 4 2k(x ct)

w 2pk 4wk
u(x,t)

k(4k 3)

32(w pk)kae )
( 16k 3 16k )(a e

−

−

− + +
=

−

++
− + + +

 (26) 

 
 With  the  aid  of  (12)  and  setting  a = 1 in Eq. 
(26), we obtain the so-called bell type solitary wave 
solution  to  the  Camassa-Holm equation (23) as 
follows 
 

          

2

2

2
2 4

w 2pk 4wku(x,t)
k(4k 3)
8(w pk)k sech k ( x ct)

( 16k 3 16k )

− + +=
−

++ −
− + +

 (27) 

 
 By means of Eq. (14) and setting a = -1 in Eq.(26), 
we possess the singular travelling wave solution of the 
Camassa-Holm equation (23) as follows 
 

          

2

2

2
2 4

w 2pk 4wku(x,t)
k(4k 3)
8(w pk)k csch k(x ct)

( 16k 3 16k )

− + +=
−

+− −
− + +

 (28) 

 
 Similarly, making use of the former two equalities 
(16) and (18), admits Eq.(27) and Eq.(29) to the 
following form 
 

     

2

2

2 4

w 2pk 4wku(x,t)
k(4k 3)
16(w pk)k 1

( 16k 3 16k ) cosh2k(x ct) 1

− + +=
−

++
− + + − +

 (29) 



Studies in Nonlinear Sci., 2 (4): 123-128, 2011 

126 

 

        

2

2

2 4

w 2pk 4wku(x,t)
k(4k 3)
16(w pk)k 1

( 16k 3 16k)cosh2k(x ct) 1

− + +=
−

+−
− + + − −

 (30) 

 
 Similarly, making use of the previous identity 
(20),then Eq.(27) and Eq.(28) can be reduced to 
 

        

2

2

2
2 4

w 2ipK 4wKu(x,t)
iK( 4K 3)
8(w ipK)iK sec K(x ct)

(16K 3 16K )

− + −=
− −
++ −
+ +

 (31) 

 

        

2

2

2
2 4

w 2ipK 4wKu(x,t)
iK( 4K 3)
8(w ipK)iK csc K(x ct)

(16K 3 16K )

− + −=
− −
+− −
+ +

 (32) 

 
which are two triangle function-type periodic wave 
solutions of the Camassa-Holm equation (23). 
 
The nonlinear Fokker Planck (FP) equation: 
Consider the nonlinear Fokker-Planck (FP) equation 
[22] in the form 
 
                         2

t x xx xxu u ( u ) Du= + λ +  (33) 

 
where D is the diffusion coefficient and λ is constant. 
The nonlinear Fokker-Planck (FP) equation (33 ) which 
appears for the macroscopic of generalized Langevin 
equations [23, 24]. 
 Inserting Eqs. (3-6) into Eq.(33) and collecting the 
coefficients of powers of y with the aid of the 
computerized symbolic computation of the powerful 
Maple, then setting each of the obtained coefficients to 
zero, results in a system of over-determined algebraic 
equations with regard to the unknown variables a and n 
as follows: 
 

2 2 2 2 2 3 2 2
08nak [ w a ka 2ka u 8na k 6Dka ] 0− + + + − =  

       2 3 2
08nak [ wa ka 2kau 8nak 6Dka] 0− − − − − − =  

       2 2
08nak [ w k 2ku 2Dk ] 0− − − − + =  (34) 

 
 Solving the system of algebraic equations obtained 
above, we obtain the following solutions 
 

             
2

0

D 1 w k 2Dk
a a,n ,u

k 2 k
− − +

= = − =  (35) 

 
 Substituting Eq.(35) into Eq.(6) and taking into 
consideration  Eq. (3) and  Eq. (10)  simultaneously, we  

 
obtain the following the exact travelling wave solution 
for the nonlinear Fokker-Planck equation (33) 
 

           
2 2k(x ct)

2k(x ct) 2

1 w k 2Dk 4kDaeu(x,t)
2 k (a e )

−

−

− − += −
+

 (36) 

 
 Similarly making use the identity Eq. (12) and 
setting a = 1 in Eq.(33), we possess the so-called bell 
type solitary wave solution of the nonlinear Fokker-
Planck equation (33) as follows 
 

       
2

21 w k 2Dk
u(x,t) 4kDsechk(x ct)

2 k
− − +

= − −  (37) 

 
 Making  use  of  the  identity  Eq. (14)  and  setting 
a = -1 in Eq. (36), we find the singular travelling wave 
solution for the nonlinear Fokker-Planck equation (33) 
in the following form 
 

     
2

21 w k 2Dk
u(x,t) 4kDcsch k(x ct)

2 k
− − +

= + −  (38) 

 
With the aid of the two previous equalities (16) and 
(18),then Eq.(37) and Eq.(38) admits 
 

    
21 w k 2Dk 1u(x,t) 8kD

2 k cosh2k(x ct) 1
− − += −

− +
 (39) 

 

    
21 w k 2Dk 1u(x,t) 8kD

2 k cosh2k(x ct) 1
− − += +

− −
 (40) 

 
 Making use of the identity Eq. (20),then Eq.(37) 
and Eq.(38) can be reduced to 
 

     
2

21 w iK 2DK
u(x,t) 4iKDsec K(x ct)

2 iK
− − −

= − −  (41) 

 

     
2

21 w iK 2DK
u(x,t) 4iKDcsc K(x ct)

2 iK
− − −

= + −  (42) 

 
which are two new triangle function-type periodic wave 
solutions of the nonlinear Fokker-Planck equation (33). 
 
The generalized Burgers-Fisher equation: In this 
case we consider the generalized Burgers-Fisher 
equation [25] reads 
 
                  r r

t x xxu p u u u qu(1 u ) 0+ − − − =  (43) 

 
where p and q are real constants and r≠1 is positive 
constants. 
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 As stated before, inserting Eqs.(3-6) into Eq. (43) 
and  collecting  the  coefficients  of  powers  of y, give 
rise   to   a   set   of  algebraic  equations  with  respect  
to  the  unknown  variables  a  and  n.  Solving  the  
over-determined system of algebraic equation by virtue 
of Maple, we find that 
 

      
2

2
0 2

(4k q)a a,u 1,n ,w 2k pk q
k (3q 4qk)

+= = = − = + −
−

 (44) 

 

                              
22k pk q

c
k

+ −
=  (45) 

 
 Substituting Eq.(44) into Eq.(6) and using Eq. (3), 
we get the general travelling wave solution to the 
generalized Buerger-Fisher equation (43) as follows 
 

                
2 2k(x ct)

2
2k(x ct)

4a(4k q)eu(x,t) 1 )
(3q 4pk)(a e

−

−

+= −
− +

 (46) 

 
 By means of the identities Eq.(12),Eq. (14) and 
setting a = 1 and a = -1 into Eq.(46),we get the so-
called bell-type solitary wave solutions of the 
generalized Burgers-Fisher equation (43) as 
 

            
2

2(4k q)u(x,t) 1 sech k(x ct)
(3q 4pk)

+= − −
−

 (47) 

 

           
2

2(4k q)u(x,t) 1 csch k ( x ct)
(3q 4pk)

+= + −
−

 (48) 

 
 Knowing, Eq. (16) and Eq. (18), then Eq. (47) and 
Eq. (48), admits 
 

            
22(4k q) 1u(x,t) 1

(3q 4pk)cosh2k(x ct) 1
+= −

− − +
 (49) 

 

           
22(4k q) 1u(x,t) 1

(3q 4pk)cosh2k(x ct) 1
+= +

− − −
 (50) 

 
 By using Eq.(20), then Eq.(47) and Eq.(48) can be 
simplified as 
 

            
2

2( 4K q)u(x,t) 1 sec K(x ct)
(3q 4ipK)
− += − −

−
 (51) 

 

            
2

2( 4K q)u(x,t) 1 csc K(x ct)
(3q 4ipK)
− += + −

−
 (52) 

 
which are two triangle function-type periodic wave 
solutions   of   the   generalized  Burgers-Fisher  
equation (43). 

 
CONCLUSION 

 
 In summary, many types of explicit and exact 
travelling wave solutions to four nonlinear evolution 
equations arising in physics are obtained. 
 The validity of this method has been tested by 
applying it successfully to the generalized regularized 
long-wave (RLW) equation, the Camassa-Holm 
equation, nonlinear Fokker Planck equation and the 
generalized Burgers-Fisher equation. 
 As a result, these new exact travelling wave 
solutions include the solitary wave solutions, the 
singular travelling wave solutions and the triangle 
function-type periodic wave solutions, are successfully 
presented by making use of our unified trial function 
method. 
 Finally, it is worthwhile to mention that the 
proposed method is straightforward, concise and it is a 
promising and powerful new method for other 
nonlinear evolution equations in physics. 
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