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Abstract: By means of Exp -function method with symbolic computation system, we obtain some new 
exact solutions of the Riccati equation. By means of the Riccati equation and its new exact solutions, we 
find some new solutions of the Petviashvili equation arising in mathematical physics. It is shown that the 
proposed method provides a very effective and powerful mathematical tool for solving nonlinear evolution 
equations arising in physics.  
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INTRODUCTION 
 
 A large variety of physical, chemical and 
biological phenomena is governed by nonlinear 
evolution equations. The analytical study of nonlinear 
partial differential equations was of great interest 
during the last decade years. The investigations of the 
travelling wave solution of nonlinear equations play an 
important role in the study of nonlinear physical 
phenomena. The importance of obtaining the exact 
solutions, if available, of those nonlinear equations 
facilitates the verification of numerical solvers and aids 
in the stability analysis of solutions. In the past decade, 
both mathematicians and physicists have made 
significant progression in this direction.  
 Searching and constructing exact solutions for 
nonlinear evolution equations is an ongoing research. 
These exact solutions when they exist can help one to 
well understand the mechanism of the complicated 
physical phenomena and dynamical processes modeled 
by these nonlinear evolution equations. Various 
powerful methods for obtaining explicit travelling 
solitary wave solutions to nonlinear evolution equations 
have proposed such as [1-20].  
 More recently, He, Abdou [2] and Abdou [14, 15, 
20] proposed a straight-forward and concise method, 
called Exp-function method, to obtain generalized 
solitary  solutions  and  periodic  solutions, applications 
of the method can be found in [2, 12, 14, 15, 20] for 
solving nonlinear evolution equations arising in 

mathematical physics. The solution procedure of this 
method, with the aid of Maple, is of utter simplicity and 
this method can easily extended to other kinds of 
nonlinear evolution equations.  
 The goal of the present work, we used the Exp -
function method, to seek new exact solutions of the 
Riccati equation, then employ the Riccati equation and 
its solutions to find more general exact solutions of 
Petviashvili equation [21] as: 
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is the linear zero-dimensional phase velocity of Rossby 
wave.  
 

EXACT SOLUTIONS OF RICCATI  
EQUATION VIA EXP-FUNCTION METHOD 

 
 The aim of this paper is motivated by the desire to 
Exp-function method to generalized Riccati equation. 
For illustration, we consider [17].  
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                      2( ) r p ( ) q ( )′φ ζ = + φ ζ + φ ζ  (2) 
 
where p, q and r are constants to be determined later 
and the prime denotes differentiation with respect to ζ.  
If setting some new variables and parameters  
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Then Eq. (2) reduces to 
 

                              2
0( ) l ( )

′

ψ ξ = + ψ ξ  (3) 
 
where l0 is a constant.  
Introducing a complex variable η defined as [17]  
 
                                  0kη = ξ + ξ  (4) 

 
where k and ξ0 are constants. Then eq. (3) convert into 
ordinary different equations, which read 
 

                             2
0k l 0

′

ψ − −ψ =  (5) 
 
where   the   prime   denotes   the   derivative  with  
respect to η.  
 In view of Exp -function method, we assume that 
the solution of Eq. (5) can be expressed as 
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where p, q, f and e are positive integers which are 
unknown to be determined later, an and bm are unknown 
constants.  
 In order to determine values of ƒ and q, we balance 
the linear term of the highest order in Eq. (5) with the 
highest order nonlinear term φ′ and φ2, we have 
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where ci are coefficients for simplicity. By balancing 
highest order of Exp -function in Eqs. (7) and (8), we 
have 
 

                                q f 2q+ =  (9) 
 
which leads to the results ƒ = q. Proceeding the same 
manner   as  illustrated  above, we can determine values  

 
of  e  and  p. Balancing the linear term of lowest order 
in Eq. (5) 
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where di are coefficients for simplicity. By balancing 
highest order of Exp -function in Eqs. (11) and (10), we 
have 
 
                               (p e) 2e− + = −  (12) 
 
which leads to the result e = p.  
 
Case (1): ƒ = q = 1 and e = p = 1  
 For simplicity, we set ƒ = q = 1 and e = p = 1, the 
trial function, Eq. (6) becomes 
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 Substituting Eq. (13) into Eq. (5), equating to zero 
the coefficients of all powers of exp(nη) yields a set of 
algebraic equations for a0, b0, a1, a-1, b-1 and k. Solving 
the system of algebraic equations with the aid of Maple, 
we obtain three sets of solutions 
 
Case (i) 
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with two arbitrary constants a-1 and b1 
 
Case (ii) 
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with two arbitrary constants a-1 and b1.  
 
Case (iii) 
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with two arbitrary constants a0, b0, b-1 and  

 

0kη = ξ + ξ  
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 According to case (1), we have the following 
generalized solitary wave solution 
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 As some special examples, when ξ0 = 0, b1 = 0, 

1 0a l− = ± − , then Eq. (17) reduces to 

 

0 0( ) l tanh( l )ψ η = − − − ξ  

 
                         0 0( ) l coth( l )ψ η = − − − ξ  (18) 

 
which are these solitary wave solutions obtained by 
Yan et al. [17]  
In view of Eq. (15), leads to 
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 As   some  special  examples,  when  ξ0  = 0, b1 = i, 

1 0a l− = ± , the solution (19) reads 

 

0 0( ) l tan( l )ψ η = ξ  

 
                            0 0( ) l cot( l )ψ η = − ξ  (20) 

 
which are these triangular function solutions given by 
Yan et al [17].  
From Eq. (16), we obtain the new exact solutions 
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Case [2]: ƒ = q = 2 and e = p = 1  
 We consider  the  case  ƒ = q = 2  and  e = p = 1, 
Eq. (6) can be expressed as 
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 Inserting  Eq.  (22) into Eq. (5), equating to zero 
the  coefficients  of  all  powers  of  exp(nη)  yields  a 
set  of  algebraic  equations  for  a2,  b1,  a0,  b0,  a1, a-1, 
b-2,  b2  and k. Solving the system of algebraic 
equations  with  the  aid  of  Maple, we obtain two sets 
of solutions 
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with arbitrary constants a0, a1, b1 and b2 
 
Case (ii) 
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with arbitrary constants a-1, b1 and b2 
 In view of Eq. (23), we obtain exact solution of eq. 
(1) as follows 
 

0

0
2 2
1 0 1 0 0 2

0 2

2 2
1 0 1 0 2 0 1 0 0 1

2 2
0 2

0 2 1

l
0 1l

a l b 2 l a b
2 1 2 l b

(a l b ) ( 4 a b l a l l b )

8 l b

l b exp(2 ) a exp( )

a b exp( )
( )

b exp(2 ) b exp( )

exp( )

−
−

+ + −

+ − − − − −

− η + η

+ − −η
ψ η =

η + η +

+ −η

 

 
                                  0 02 lη = − ξ + ξ  (25) 

 
According to Eq. (24), we have the following solutions 
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0 02 lη = − − ξ + ξ  

 
AUXILIARLY EQUATION METHOD 

 
 For a given nonlinear evolution equation, say, in 
two independent variables as follows 
 
                             t xN(u,u,u, . . . ) 0=  (27) 

 
and its travelling wave solution 
 
                      (x,t) ( ), kx ctφ = φ ξ ξ = −  (28) 

 
where k and c are constants to be determined later.  
 Inserting Eq. (28) into Eq. (27) yields an ordinary 
differential equation of φ(ξ). Then φ(ξ) is expanded into 
a polynomial in ƒ(ξ) and g(ξ)  



Studies in Nonlinear Sci., 2 (4): 116-122, 2011 

119 

 

             
M

i 1
0 i i

i 0

( ) A f ( ) [Af( ) Bg( )]−

=

φ ξ = + ξ ξ + ξ∑  (29) 

 
where A0,  Ai and Bi are constants to be determined 
later, M is fixed by balancing the linear term of the 
highest order derivative with nonlinear term, while ƒ(ξ) 
and g(ξ) satisfy the system of equations 
 

2 4 31
f pf qf r,f pf qf

2
′′′ = + + = +  

 
2 2 2

1 2 3 4g g(c c f ),g c c f
′ ′

= + = +  
 

                              2
5 6g f fg(c c f )

′ ′

= +  (30) 

 
where  the  prime  denotes  derivative  with  respect  to 
ξ and p, q, r and ci(i = 1, …6) are constants to be 
determined.  
 To look for the travelling wave solution of Eq. (1), 
we use the gauge transformation 
 
                       ( ), kx ly wtφ = φ ξ ξ = + −  (31) 

 
Inserting Eq. (31) into (1), we have 
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 Integrating obtained equation once and setting the 
integration constant as 0, we have 
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Eq. (33) can be rewritten as 
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 Considering the homogeneous balance between 
φ″(ξ) and φ2(ξ) in Eq. (34), we have M = 2. Therefore, 
we assume that φ(ξ) can be expressed as 
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where A0, Ai and Bi are constants to be determined and 
ƒ(ξ) and g(ξ) satisfy the system of equations (30). We 
substitute anzatz (35) into (34), make use of Eq. (30) 
with computerized symbolic computation, equating to 
zero  the coefficients  of all powers of ƒi(ξ)gj(ξ) yields a  

 
set of algebraic equations for A0, Ai and Bi. Solving the 
system of algebraic equations with the aid of Maple, we 
have 
 
Case [1] 
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 By means of Eqs. (36) and (35), admits to the new 
exact travelling wave solutions of Eq. (1) as follows 
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−α
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 (38) 

 
 Using Eqs. (37) and (35), admits to the new exact 
travelling wave solutions of Eq. (1) as follows 
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where ƒ(ξ) and g(ξ) satisfy Eq. (30) with the constraint 
among the parameters 
 

3 2 6 4 1 5c ( 5q c 2c ) 2c (3p c 2c ) 0= − + + + − − =  

 
where kx ly wtξ = + − . Different classes of new periodic 
wave solutions can be obtained according to the 
different choice of the two functions ƒ(ξ) and g(ξ). So 
we study only the solution of Eq. (39) in what follows.  
 
New periodic wave solutions 
Case (1): When 2p (2m 1)= − , 2q ( 2m )= − , 2r (1 m )= − , 

2
1c m= , 2

2c 2m= − , 2
3c (1 m )= − , 2

4c m= , 2
5c m= , 

2
6c m= − . We have ƒ(ξ) = cn(ξ) and g(ξ) = dn(ξ). Thus 

the new periodic wave solution of Eq. (1) is  
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For m→1, Eq. (40) admits to solitary wave solution 
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Case (2): When p = (2-m2), q = -2(1-m2), r = -1, c1 =1, 
c2 = -2(1-m2), 2

1
3 m

c = − , 2
1

4 m
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Here, we have ƒ(ξ) = nd(ξ) and g(ξ) = sd(ξ) and the 
corresponding new periodic wave solution is  
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 For m→0, Eq. (41) admits to triangular function 
solution as 
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2
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Case  (3): If  we  select   p  =  -(1+m2),  q  =  2, r = m2, 
c1 = -m2,  c2 = 2, c3 = -1, c4 = 1, c5 = -m2,  c6 = 1. We 
have ƒ(ξ) = ns(ξ) and g(ξ) = cs(ξ) and we obtain the 
new periodic wave solution as follows 
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When m→1, Eq. (42) admits to new solitary wave 
solution as follows 
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 For m→0, Eq. (42) admits to triangular wave 
solution as 
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Case (4): Now with p = -(1+m2), q = 2m2, r = 1, c1 = -1, 
c2 = 2m2,  c3 = 1,  c4  =  -1, c5 = -1, c6 = m2. In this case,  

 
we have ƒ(ξ) = sn(ξ) and g(ξ) = cn(ξ) and thus the 
corresponding new periodic wave solution is  
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( 4 m ) (3m ) m( ) sn ( ) 3 sn( )cn( )
2
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For m→0, Eq. (43) admits to rational solution 
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2
− − α

φ ξ =
β

 

 
 In case of m→1, Eq. (43) admits to solitary wave 
solution as follows 
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2
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Case (5):  If p  =  -(1+m2),  q  =  2m2,  r = 1, c1 = -m2, 
c2 = 2m2,  c3 = -1, c4 = -m2,  c5 = -m2,  c6 = m2. In this 
case, we have ƒ(ξ) = sn(ξ) and g(ξ) = dn(ξ) and thus the 
corresponding new periodic wave solution is  
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When m→1, Eq. (44) admits to solitary wave solution 
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Case (6): If  we  select  p =  -(1+m2),   q = 2,  r  =  m2, 
c1 = -1, c2 = 2, c3 = -m2, c4 = 1, c5 = -1, c6 = 1. We have 
ƒ(ξ) = ns(ξ) and ƒ(ξ) = ds(ξ) and we obtain the new 
periodic wave solution as 
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2
6 2

( 4 m ) 2 1
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2
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 As long as m→0, Eq. (45), admits to triangular 
periodic wave solution 
 

2 2
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4 2 1
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2
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 As long as m→0, Eq. (45), admits to triangular 
periodic wave solution 
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For m→1, Eq. (45) admits to solitary wave solution as 



Studies in Nonlinear Sci., 2 (4): 116-122, 2011 

121 

 

2

25 2 1
61 2( ) csch ( ) 3 csch( )coth( )− − α

β β β
φ ξ = + ξ + ξ ξ  

 
SUMMARY AND DISCUSSION 

 
 In summary, we use the Exp -function method with 
a computerized symbolic computation to seek new 
exact solutions of the Riccati equation. Then we 
employ the Riccati equation (2) and its new solutions to 
find some new exact solutions of Petviashvili equation. 
It worth noting that the Exp -function method is more 
effective and simple than other methods and a lot of 
solutions can be obtained in the same time. In addition, 
this method is also comupterizable, which allows us to 
perform complicated and tedious algebraic calculation 
on a computer.  
 In view Exp-function method, we give a very 
simple and straightforward method for nonlinear 
evolution equations arising in mathematical physics. 
We make some important remarks on the method as 
follows 
 
1.  The method leads to both generalized solitary 

solutions and periodic solutions.  
2.  The expression of the Exp -function is more general 

than the sinh-function and the tanh-function, so we 
can found more general solutions in the Exp -
function method.  

3.  The Exp-function method can be employed in both 
the straightforward way and the sub-equation way. 
But we suggest that it is better to use this method 
directly, not only for its convenience, but also 
because it is sometimes possible to lose some 
information and solutions if we apply it in the sub-
equation way.  

 
 Finally, it can be easily seen that the method used 
in this paper must futher be improved to solve more 
nonlinear partial differential equations arising in 
mathematical physics. This is our task in the future.  
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