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Abstract: This paper researches the accuracy of the Differential Transformation Method (DTM) for 
solving the Holling Tanner models which are described as two-dimensional system of ODES with 
quadratic and rational nonlinearities. Numerical results are compared to those obtained by the fourth-order 
Runge-Kutta method to illustrate the preciseness and effectiveness of the proposed method. The direct 
symbolic-numeric scheme is indicated to be efficient and accurate. 
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INTRODUCTION 

 
 In this paper, we consider two different Holling-
Tanner model: Model with a Wollkind et al. [1] and 
model with a Collings [2]. 
 The May or Holling-Tanner model for predator-
prey interaction is described by following differential 
equation system: 
 

 
 

                    (1) 
 
 Here  N1  and  N2 denote prey and predator 
densities, respectively, in time T. It is assumed that in 
the absence of the predator, the prey population density 
grows according  to  a  logistic  curve  with  carrying  
capacity K and with an intrinsic growth rate (or biotic 
potential) r. The  parameter  s  denotes  the  intrinsic  
growth  rate of the predator. c is the maximal predator 
per  capita  consumption  rate  and  m  is the half 
capturing saturation constant. The predator growth 
equation  is  of  logistic  type  with  a  modification  of 
the  conventional  one.  Here  the   available  resources  
is  not  constant, but is equal to nN1, which is 
proportional  to  prey  abundance. The parameter n is 
the  measure  of  the  food  quality  that  the prey 
provides for conversion into predator births. Several 
dynamical behaviours of Holling-Tanner model have 
been studied extensively in literature May [3], 
Tanner[4], Wollkind et al. [1], Murray [5], Hsu and 
Hwang [6], Collings [2, 7], Saez and Gonzalez-Olivares 
[8], Braza [9]. 

 It  is  already  mentioned  that Haque and Li [10] 
have introduced a modified version of the above 
Holling-Tannermodel by replacing the Holling type-II 
prey-dependent functional response with a ratio-
dependent one. 
 However,  as  a  starting  point  of  our study, we 
take their modified model described under the 
framework of the following set of ordinary differential 
equations: 
 

 
 

                             (2) 
with 
 

N1(0)>0, N2(0)>0, 
 

 
 

 
 
 To reduce the number of parameters and to 
determine which combinations of parameters control 
the behaviour of the system, we nondimensionalize the 
system (2). We choose 
 

1 2N mN
x , y and t rT

K K
= = =  

 
 Then the system (2) takes the form (after some 
simplification) 
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                             (3) 
with 

x(0)>0, y(0)>0, 
 

dx
0 for(x,y) (0,0)

dt
= =  

 

 
 
where x and y are the dimensionless population 
variables; t is the dimensionless time variable; β, γ and 
δ are dimensionless parameters. Then, as in [11], we 
take β = 1.8, γ = 0.2 and δ = 1 
 When dealing with nonlinear systems of ordinary 
differential equations, such as the Holling Tanner 
models , it is often difficult to obtain a closed form of 
the analytic solution. In the absence of such a solution, 
the accuracy of the DTM [12] is then tested against 
classical numerical methods, such as the Runge-Kutta 
method (RK4). RK4 has been widely and commonly 
used for simulating solutions for chaotic systems  
 The goal of this paper is to extend application to 
classical DTM and multi-step DTM for obtained 
approximant analytical solution of the aboved 
mentioned the Holling Tanner models .  
 

DIFFERENTIAL TRANSFORMATION METHOD 
 
Consider a general system of first-order ODES 
 

 
 

 
 

                    (4) 
 
subject to the initial conditions 
 

        (5) 
 
 To illustrate the Differential Transformation 
Method (DTM) for solving differential equations 
systems, the basic definitions of differential 
transformation are introduced as follows. Let x(t) be 
analytic in a domain D and let t = t0 represent any point 
in D. The function x(t) is then represented by one  

 
power    series    whose   center   is   located   at   t0. The 
differential   transformation   of   the   k th  derivative  
of  a function x(t) is defined as follows: 
 

                     (6) 
 
 In (6), x(t) is the original function and X(k) is the 
transformed function. As in [12-20] the differential 
inverse transformation of X(k) is defined as follows: 
 

                   (7) 
 
From (6) and (7), we obtain 
 

             (8) 
 
 The fundamental theorems of the one-dimensional 
differential transform are: 
 
Theorem 1: If z(t) = x(t)±y(t), then Z(k) = X(k)±Y(k). 
 
Theorem 2: If z(t) = cy(t), then Z(k) = cY(k). 
 

Theorem 3: If 
dy(t)

z(t) =
dt

, then Z(k) = (k+1)Y(k+1). 

 

Theorem 4: If 
nd y(t)

z(t) =
dt

, then 
(k n)!

Z(k) = Y(k)
k!
+

. 

 
Theorem 5: If z(t) = x(t) y(t), then  
 

1

k
1 1k 0

Z(k) X(k)Y(k k )
=

= −∑ . 

 

Theorem 6: If z(t) = tn, then 
1 k n

Z(k) (k n)
0 k n

=
= δ − = ≠

. 

 

Theorem 7: If 
F(x(t),y(t))

z(t)
ax(t) by(t) c '

=
+ +

, then 

 

 
 
Theorem 8: If  

F(x(t),y(t))
z'(t)

ax(t) by(t) c '
=

+ +
 

 

then           
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 In real applications, the function x(t) is expressed 
by a finite series and (8) can be written as 
 

               (9) 
 
Equation (9) implies that 
 

 
 
is negligibly small. 
 According to DTM, by taking differential 
transformed both sides of the systems of equations 
given Eq.(4) and (5) is transformed as follows: 
 

 
 

                                             
                 (10) 
 
           (11) 
 
 Therefore, according to DTM the n-term 
approximations for (4) can be expressed as 
 

                       (12) 
 

 
                                                             

 
 

MULTI-STEP DIFFERENTIAL 
TRANSFORMATION METHOD 

 
 The approximate solutions (4) are generally, as will 
be shown in the numerical experiments of this paper, 
not valid for large t. A simple way of ensuring validity 
of the approximations for large t is to treat (10)-(11) as 
an algorithm for approximating the solutions of (4)-(5) 
in a sequence of intervals choosing the initial 
approximations as 
 

 

 
 

                            (13) 
 
 In order to carry out the iterations in every 
subinterval [0, t1), [t1,  t2), [t2,  t3),…, [tj-1, t) of equal 
length h°, we would need to know the values of the 
following[15], 
 

, ,  (14) 
 
 But,  in  general,  we  do  not  have these 
information  at  our  clearance  except  at  the initial 
point t* = t0. A simple way for obtaining the necessary 
values could be by means of the previous n-term 
approximations ϕ1,n, ϕ2,n,…, ϕ of the preceding 
subinterval, i.e., 
 
    (15) 
 

RESULTS AND DISCUSSION 
 
 Taking the differential transformation of Eq. (3) 
with respect to time t gives 

          

                        

                        (16) 
 

          (17) 
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Fig. 1: Local changes of x, y for 3-term DTM(line) and RK4 with h = 0.001 (circle) 
 

        
 
Fig. 2: Local changes and phase portrait of x, y for 3-term multi-step DTM with h = 0.1 (line) and RK4 with h = 

0.001 (circle). Clearly it is a stable spiral converging to (X(0), Y(0)) = (0.28, 0.1867) 
 

 
 
Fig. 3: Difference    between    3-term    DTM    with  

∆t = 0.01  and  RK4 with h = 0.001 with time 
span [0, 200] 

 
where X(k) and Y(k) are the differential 
transformations  of  the  corresponding  functions  x(t) 
and y(t), respectively and the initial conditions are 
given by X(0) = 0.28 and Y(0) = 0.1867. 
 

CONCLUSION 
 
 In this paper, we apply the multi-step DTM, a 
reliable  modification  of  the  DTM,  that  improves the  

convergence of the series solution. The method 
provides immediate and visible symbolic terms of 
analytic solutions, as well as numerical approximate 
solutions to both linear and nonlinear differential 
equations. The validity of the proposed method has 
been  successful  by  applying  it  for the Holling-
Tanner  models .  The  method  were  used in a direct 
way without using linearization, perturbation or 
restrictive assumptions. It provides the solutions in 
terms of convergent series with easily computable 
components and the results have shown remarkable 
performance. 
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