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Abstract: In this paper we consider a curvature based scheme for the construction of iterative methods for 
the solution of nonlinear equations and a new class of methods from any iterative formulae of order at least 
two is presented. It is proven by analysis of convergence that each method of the class is at least third-order 
convergent. Our methods are tested on several numerical examples and their efficiency is demonstrated in 
comparison with Newton's method and the other third-order methods. 
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INTRODUCTION 
 
 This paper is concerned with iterative methods to 
find a simple root α, i.e., ƒ(α) = 0 and ƒ′(α) ≠ 0, of a 
nonlinear equation ƒ(x) = 0 that uses no higher than the 
second derivative of ƒ. 
 The best known iterative method for the calculation 
of α is Newton's method defined by 
 

                            n
n 1 n

n

f ( x )
x x

f ' ( x )+ = −  (1) 

 
where x0 is an initial approximation sufficiently close to 
α. This method is quadratically convergent [1]. 
 There exists a modification of Newton's method 
with third-order convergence due to Potra and Ptak [2] 
defined by 
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+ −
= −  (2) 

 
 Some Newton-type methods with third-order 
convergence that do not require the computation of 
second derivatives have been developed [3-23]. To 
obtain some of those methods the Adomian 
decomposition method was applied in [3, 4], He's 
homotopy perturbation method in [5, 6] and Liao's 
homotopy analysis method in [7]. Other methods have 

been derived by considering different quadrature 
formulas for the computation of the integral arising 
from Newton's theorem 
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Weerakoon and Fernando [8] applied the rectangular 
and trapezoidal rules to the integral of (3) and obtained 
Newton's method and the cubically convergent method 
 

            n
n 1 n

n n n n
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while Frontini and Sormani [9] obtained the cubically 
convergenct method 
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by considering the midpoint rule. In [10], Homeier 
derived the following cubically convergent iteration 
scheme 
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by considering Newton's theorem for the inverse 
function  x = (y)  instead  of  y = ƒ(x). This  scheme has  
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also been derived by Özban in [11] by using arithmetic 
mean of ƒ′(xn) and ƒ′(xn-ƒ(xn)/ƒ′(xn)) instead of ƒ′(xn) in 
Newton's method (1). On the other hand, Kou et al. in 
[12] considered Newton's theorem on a new interval of 
integration and arrived at the following cubically 
convergent iterative scheme 
 

           n n n n
n 1 n

n

f(x f(x ) / f '(x )) f(x )
x x

f ' ( x )+

+ −
= −  (7) 

 
 In  t his  paper  we  also focus on developing the 
third-order modifications of Newton's method which 
improve any existing second-order formula in the order 
and are competitive with existing third-order methods 
in their efficiency. A detailed description of our 
construction  from  a ny  given  iteration  formula  of 
order two are provided and the resulted methods are 
presented in the following section. Finally, the 
comparison of our methods with other third-order 
methods is given. 
 

ITERATIVE METHODS AND  
CONVERGENCE ANALYSIS 

 
 Let yn = ƒ(xn), y′n = ƒ′(xn) and y″n = ƒ″(xn), where 
xn is an n-th iterate. To develop new methods we 
consider the circle of curvature, which has the same 
tangent line at the point (xn, yn) as the curve y = ƒ(x) 
and  also  a  curve  defined by the function h(x) = g 
(xn)(x-xn) passing through the point (xn, 0) where g is a 
function to be determined later. 
 By an elementary calculation, the circle of 
curvature at (xn, yn) can be found 
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 At the intersection point (xn+1, h(xn+1)) of the circle 
of curvature at (xn, yn) with the curve y = h(x), we get 
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Equation (8) can further be rewritten as follows 
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 By replacing xn+1 on the right-hand side of (10) by 
the Newton iterate, we obtain the iterative method 
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where  
n
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Substituting  
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into (12) gives 
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 If we compute the error equation for the iteration 
(13) by the help of Maple, we obtain 
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where en = xn-α. Thus, for any real valued function g 
satisfying the conditions 
 
                                 g( ) g'( ) 0α = α =  (15) 

 
the iteration (13) yields a third-order modification of 
Newton's method. Many choices of g are possible to 
obtain iterative methods. If we take g≡0, then (13) 
reduces to the method presented in [18]. One may take 
g(x) = ƒm(x), m≥2, giving 
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 Of particular interest among those choices is to 
take  g(x) = ψ(x)≡ (x-φ(x))m, m≥2, where φ is any given  
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iteration function of order at least two. This gives rise to a class of third-order methods 
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 If we consider an iteration function φ of order two that requires the computation of the functions yn, y′n and y″n, 
then new third-order method of practical utility results in. 
 We observe that the method (13) and (17) require evaluation of the second derivative. To derive its second-
derivative-free variant, which is important from the practical point of view, we consider the approximation 
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where, n
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′
 to obtain second-derivative-free iteration formula 
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 We can prove that formula (19) also has the order of convergence three. If we consider an iteration function φ of 
order two requiring the evaluation of the functions yn, y′n and ƒ′(zn), (19) yields a new third-order method, which is 
more optimal than the original one in the efficiency. 

 If we consider the Newton iteration function defined by 
f(x)

(x) x
f'(x)

φ = −  in (19), then we obtain the new third-

order method 
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. If we consider the second-order iteration function [16] defined by 
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(19), then we obtain the new third-order method 
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where, '

n n n ny f ( x ) , y f'(x )= = . Thus, we have proved the 
following theorem: 
 
Theorem 2.1: Let α∈I be a simple zero of sufficiently 
differentiable function ƒ: I→R for an open interval I. If 
x0 is sufficiently close to α and g satisfies conditions g 

(α) = g′(α) = 0, then the order of convergence of the 
methods defined by (13) is three. 
 

NUMERICAL EXAMPLES  
 
 We present some numerical test results for various 
cubically  convergent  iterative  methods  in  Table  1-7. 
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The following methods were compared: the Newton 
method (NM), the method of Weerakoon and Fernando 
(4) (WF), the midpoint method (5) (MP), Homeier's 
method (6) (HM), the method of Kou et al. (7) (KM) 
and our new curvature method (20) with m=3 (KCM), 
which was arbitrarily chosen from the methods 
presented in this contribution. All computations were 
done using MAPLE using 64 digit floating point 
arithmetic (Digits:=64). We accept an approximate 
solution rather than the exact root, depending on the 
precision (ε) of the computer. We use the following 
stopping criteria for computer programs:  
 
(i) n 1 n|x x |+ − < ε   

(ii) n 1| f ( x ) |+ < ε  

 
and so, when the stopping criterion is satisfied, xn+1 is 
taken as the exact root α computed. For numerical 
illustrations in this section we used the fixed stopping 
criterion ε = 10−15. We used the following test functions 
and display the computed approximate zeros x*: 
 

3 2
1f ( x ) x 4x 10,= + −   

*x 1.3652300134140968457608068290=  

 
2 2

2f (x) sin ( x ) x 1,= − +   

*x 1.4044916482153412260350868178=  

 
2 x

3f ( x ) x e 3x 2,= − − +  

*x 0.25753028543986076045536730494=  
 

4f (x) cosx x,= −  

*x 0.73908513321516064165531208767=  
 

3
5f ( x ) (x 1) 1,= − −  *x 2=  

 
6f (x) sinx x/2,= −  

*x 1.8954942670339809471440357381=  
 

2x 2
7f (x) xe sin x 3cosx 5,= − + +  

*x -1.2076478271309189270094167584= . 

 
 As convergence criterion, it was required that the 
distance of two consecutive approximations δ for the 
zero was less than 10−15. Also displayed are the number 
of iterations to approximate the zero (IT), the number of 
functional evaluations (NFE) counted as the sum of the 
number of evaluations of the function itself plus the 
number of evaluations of the derivative and the value 
ƒ(x*). The  numerical  results  presented   in   the  tables  

 
Table 1: ƒ1(x) = x3+4x2-10, x0 = 3.0 

 IT  NFE  ƒ(x*)  δ 

NM  7  14  4.60e-39  2.38e-20 
WF  5  15  0  2.96e-24 
MP  5  15  0  2.25e-26 
HM  5  15  0  1.80e-42 
KM  5  15  0  2.48e-22 
KCM  5  15  8.49e-58  4.65e-20 

 

Table 2: ƒ2(x) = sin2(x)-x2+1, x0 = 3.5 

 IT  NFE  ƒ(x*)  δ 

NM  7  14  -3.03e-43  3.95e-22 
WF  5  15  -2.0e-63  2.12e-30 
MP 5 15 -4.56e-61 6.76e-21 
HM 5 15 -2.0e-63 9.30e-33 
KM 5 15 1.18e-45 7.67e-16 
KCM 7 21 -1.41e-59 1.68e-20 

 
Table 3: ƒ3(x) = x2-ex-3x+2, x0 = -1.0 

 IT  NFE  ƒ(x*)  δ 

NM 6 12 1.10e-52 1.76e-26 
WF 4 12 3.72e-54 2.98e-18 
MP 4 12 0 3.26e-24 
HM 4 12 1.0e-63 3.79e-22 
KM 4 12 -1.77e-54 1.69e-18 
KCM 5 15 1.0e-63 1.63e-32 

 
Table 4: ƒ4(x) = cos x-x, x0 = 1.2 

 IT  NFE  ƒ(x*)  δ 

NM 5 10 -1.90e-35 7.16e-18 
WF 4 12 0 1.97e-34 
MP 4 12 0 2.72e-27 
HM 4 12 0 4.0e-29 
KM 4 12 -6.07e-57 2.50e-19 
KCM 4 12 -3.37e-62 7.31e-21 

 
Table 5: ƒ5(x) = (x-1)3-1, x0 = 2.5 

 IT  NFE  ƒ(x*)  δ 

NM 7 14 5.03e-56 1.29e-28 
WF 5 15 0 4.57e-34 
MP 5 15 0 4.46e-37 
HM 4 12 5.98e-54 2.29e-18 
KM 5 15 0 7.99e-33 
KCM 5 15 0 2.02e-28 

 
Table 6: ƒ6(x) = sin x x/2, x0 = 1.3 

 IT  NFE  ƒ(x*)  δ 

NM 10 20 -1.25e-44 1.21e-22 
WF 5 15 2.0e-64 2.47e-23 
MP 5 15 7.98e-50 4.66e-17 
HM divergent  
KM 18 54 0 2.11e-31 
KCM divergent 
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Table 7: 
2x 2

7f ( x ) xe sin x 3cosx 5,= − + + , x0 = -2.0 

 IT  NFE  ƒ(x*)  δ 
NM 9 18 -2.27e-40 2.73e-21 
WF 7 21 -4.0e-63 3.11e-44 
MP 6 18 -4.0e-63 2.12e-23 
HM 6 18 -4.0e-63 2.57e-32 
KM 6 18 -4.0e-63 8.87e-34 
KCM 7 21 -4.0e-63 4.45e-30 

 
shown below demonstrate the efficiency of one of the 
methods presented in this work. Notice that the number 
of iterations (IT) is given along with the value of the 
function at the last iteration ƒ(xn). From the numerical 
tests we performed we conclude that the newly 
presented methods can be competitive with Newton’s 
method, which is representative of classical methods 
and other third-order methods in the literature. 
 

CONCLUSION 
 
 In this paper, we presented general third-order 
methods for solving nonlinear equations based on the 
circle of curvature and an auxiliary curve. These 
methods have the same efficiency as the other third-
order methods in the literature. We conclude from 
numerical examples that the proposed methods have at 
least equal performance as compared with the other 
methods of the same order. 
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