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and Holing |11 Type Functional Responses on Time Scales
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Abstract: In this paper, we consider a periodic delayed predator-prey systems with harvesting terms and
Holing 111 type functional responses on time scales. Using coincidence degree theory, some sufficient
conditions are obtained for the global existence of multiple positive periodic solutions of the model.
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INTRODUCTION

In recent years, the existence of periodic
solutions for the predator-prey model has been widely
studied. Since the exploitation of biological resources
and the harvest of population species are commonly
practiced in fishery, forestry and wildlife management,
the study of population dynamics with harvesting is an
important subject in mathematical bioeconomics,
which is related to the optima management of
renewable  resources [6, 16, 22]. Recently, many
scholars investigated some predator-prey models with
harvesting [9, 13, 27, 28].

It is well known that two species Lotka-Volterra
predatory-prey model with harvesting terms can be
formulated by [19, 23]:

IX(O=X(0)(a - Bx() -ey(1) - hy M
TY()=x(t)(a, - bx(t) -cy(1) - h,

where x (t) and y (t) denote the densities of the prey and
the predator, respectively; a and h(i = 1,2) are dl

positive constants and denote the intrinsic growth rates
and the intra-specific competition rates, respectively;

c;>0 is the predation rate of the predator and ¢>0
represents the conversion rate at which the ingested
prey in excess of what is needed for maintenance is
translated into the predator population increase; h(i =
1,2) is the ith species harvesting terms standing for the
harvests. Recently, Zhao and Ye [29] considered the
following non-autonomous model:

Tx(t)=x(t)(a(t) - b{t)x(t) - ¢, (Yy(1)) - h{t)

2
Y (O=x()(@,(1)- b,()x(t) - c@)y(1)) - h(t) @

and some sufficient conditions are obtained for the
existence of four positive periodic solutions of (2).
Very recently, Wei [25] studied the following three-
species periodic predator-prey system with Holling 111
type functional response and harvesting term:
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where the parameters in system (3) are continuous
positive w-periodic functions and proved that the
system (3) exists at least eight periodic positive
solutions. One discrete analogue of system (3) can be
rewritten asfollows:
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wheret isintegers.
As was pointed out by Kuang [15] that any model
of species dynamics without delays is an approximation
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at best. More detailed arguments on the importance and
usefulness of time-delays in realistic models may also
be found in the classical books of Gopalsamy [11] and
Macdonald [18]. Many scholars studied the delay
predator-prey systems and obtained some interesting
results Egami [7], Fan [8], He et al. [12], Huo [14] and
Xu[26].

On the other hand, recently, in order to unify
differential and difference equations, people have done
a lot of research about dynamic equations on time
scales. Moreover, many results on this issue have been
well documented in the monographs [1-5, 12, 17, 20,
21, 24]. And, in fact, continuous and discrete systems
are very important in implementing and applications.
But it istroublesome to study the existence and stability
of periodic solutions for continuous and discrete
systems, respectively. Therefore, it is meaningful to
study that on time scale which can unify the continuous
and discrete situations.

Motivated by the above reasons, in this paper, we
are concerned with the global existence of multiple
positive periodic solutions of the following predator-
prey system with delays on time scales:

a, (et Vg0

D - _ xft)_
TX{ (t)=r(t)-ay(t)e 1+b12(t)exl(téx1(t-t(t))

| - hye ™"
.:"xZD(t)zrz(t)- azz(t)ex2(o +2(t) - hz(t)e'xz(‘) )

I X (t-1(0) X (t-t (V)

| D t)=r(t) + qz(t)aza (t)e €

.:.Xs( )=r{t) l+b23(t)ezxz(u(0)
I - ag (e - hy(t)e ™
where

Xt t(1) x1(t-t (1)

_a(a,met e
z(t)= 1+b12(t)ez>&(z-t(z))

Xo (t- t(t)) Xx4t)
a,(ne? Ve

- 1+ b23(t) exz(l- t(t))exz(t)

% (t) stands for the density of jth species at time t,
respectively; T is a time scale, i.e., T is an arbitrary
nonempty closed subset of the real numbers R; & (t)
represents the jth species intrinsic growth rates; g; (t)
denotes the intra-specific competition rates of the jth
species; q; (1), gz (t) are the nutrition conversion rates
for the first species to the second species, the second
species to the third species, respectively; hy (t) is the
harvesting term for the jth species. Moreover, t(t), r;(t),
8i(t), Bi(t), h(t) and ax(t), @s(t), bia(t), bas(t), A (0)
gz(t) are rd-continuous, bounded and strictly positive
w-periodic functions defined on [0,+¥(j=1,2,3). The
symbol D stands for the delta-derivative and w is
periodic time scale which has the subspace topology
inherited form the standard topology on R.

It is easy to see that the predator-prey system (5)
with delays on time scales includes the systems (1-4) as
special cases. Thus, the predator-prey system (5)
provides a general setting for the study of the
continuous and discrete predator-prey system with
delays. To our best knowledge, (5) has not been
investigated on time scales so far.

In this paper, by using the coincidence degree
theory, some sufficient conditions are obtained which
guarantee the global existence of multiple positive
periodic solutions of system (5). Our results incorporate
and extend a known result in the literature essentially
when the time scale is chosen as the real numbers and
thedelay is zero.

PRELIMINARIES

In this section, we first recall some basic
definitions, lemmas on time scales which are used in
the following. For more details, we refer readers to
[1,3 5]

Let T be a nonempty closed subset (time scale) of
R. Throughout this paper, we assume that the time scale
T is unbounded above and below, such as R,Z and

(J f2k.2k+1].
The forward and backward jump operators s,

r-;T® T and the graininess u: T®R" are defined,
respectively, by

s(t)=inf{sl T:s>t}
r(t)=sup{sl T:s<t}, m(t)=s(t)-t

A pointtl T is caled left-denseif t>inf T and
r (t) =t, left-scattered if r (t) <t, right-dense if t<sup T
and s (t) =t and right-scattered if s (t)>t. If T has a
|eft-scattered maximum m, then T = T\{m}; otherwise
T*=T. If T has a right-scattered minimum m, then
T¢=T\{m}; otherwise T*=T.

Let Wi R and w>0. We say that T is w-periodic
time scale if T is a nonempty closed subset of R such
that t+w T and p(t) = p(t+w) whenever ti T.

A function |:T®R is right-dense continuous
provided it is continuous at right-dense point in T and
its left-side limits exist at left-dense pointsin T. If | is
continuous at each right-dense point and each | eft-dense
point, then | is said to be a continuous function on T.
We define C(J,R) = { u(t) is continuouson J} .

For yT®R and tI T, we define the delta
derivative of t(t), £(t), to be the number (if it exists)
with the property that for a given e>0, there exists a
neighborhood U of t such that

Ily(s(®)) - YOI -y°®OIs(t)- sli<els() - s
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foral sl U.

If y is continuous, then y is right-dense continuous
and if y is delta differentiable at t, then y is continuous
att.

Let y be right-dense continuous. If Y°(t) = y(t),
then we define the deltaintegral by

QYEDs=Y (1) - Y ()

Definition 2.1: [3] We say that a time scale T is
periodic if there exists p>0 such that if ti T, then

t+pl T. For T R, the smallest positive p is called the
period of the time scale.

Definition 2.2: [3] Let T* R be a periodic time scale
with period p. We say that the function |: T® R is
periodic with period wif there exists a natural number n
such that w=np, ! (t+w) = ! (t) for al ti T and wisthe
smallest number such that | (t+w): | (t).

If T=R, we say that | is periodic with period w>0
if w is the smallest positive number such that
L(t+w)=! (t) foral t1 T.

Definition 2.3: [3] A function |: T® R is said to be rd-
continuous if it is continuous at right-dense pointsin T
and its left-sides limits exist (finite) at |eft-dense points
in T. The set of rd-continuous functionsis denoted by

Crd = Crd(T):Crd(TlR)

Lemma 2.1: [3] Every rd-continuous function has an
antiderivative.

Lemma 22 [3] If abl T, a, bl R and !,
then the following conclusions hold:

d C(TR),

b
by

- Qlaf(t)+bg()IDt=agy (1D+ bu(Dt

- if{(tP Oforall aftEb, then §f(H)Dt? O

o if [(DEg() on [ab) = {tI T: aft<b}, then
| F (VDL EE Qoo

The following concepts and facts can be found in
the book due to Gains and Mawhin [10].

Let X,Z be normed vector spaces, L:Dom LI X® Z
be a linear mapping and N:X" [0,1]® Z be a continuous
mapping. The mapping L will be called a Fredholm
mapping of index zero if dimKer L = codimim <+¥
and ImL is closed in Z. If L isaFredholm mapping
of index zero, then there exist continuous projectors
P X®X and QZ®Z such that ImP=KerL and

65

ImL=KerQ=ImI-Q and X=KerLAImQ, Z=Im LAIMQ.
It follows that mapping LDomLmKerP:(I- PX®ImL is

invertible and its inverse is denoted by Kp. If Wisa
bounded open subset of X, the mapping N is called

L-compact on W’ [0,], if QN (W [0,1]) is bounded
and Kp(I-QN: W [0,1]® X is compact. Since ImQ is
isomorphic to KerL, we know that there exists an

isomorphism J: ImQ® KerL.
The following Lemma is the Mawhin continuous
theorem.

Lemma 2.3: [10] Let L be a Fredholm mapping of
index zero and let N be L-compact on W. Assume that

« for each I1 (0,1), every solution x of Lx = I N(x,l)
is such that x¥ w[ JpomL ;

*  QN(x,0)x* 0 for each xT W[ DomL ;

+  deg(JQN(x,0,W |KerL,0)* 0.

Then the equation Lx = Nx has at |east one solution

in \T\/ﬂDomL )

In the following, we denote the notation
R" =[0, +¥),k=min{R"(T}.1,, =[k,k + W] T

To facilitate the discussion below, throughout this
paper we adopt the following notation and all the other

notations appearing in this paper are defined
analogously.
Lo— . M _ T _ 1 N
5 =minf(t), " =maxf(t), f ——Qf(S)DS
tl, thly W w

where ! T C¢(T) is anw-periodic real function.
For convenience, we introduce some notations as
follows:

E-
15 =

1
m(ﬁM i\](ﬁM)z - 4aphy)

+ 1 W
5= (2 422
12

M
24~ 22 \/(rzM +&)2 - 4a|£2h|§ )
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b12
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We assume the following hypothesis throughout

this paper:
(A >2,/%(31M42+hM)

%IZ 3243 +hM

(A) §>
(A) 15> Z\Iaé”ahﬁ”

Lemma 2.4: [25] Let x>0, y>0, z>0 and x >2,fyz . For
functions

2

- dyz

X+
f(x,y,z)= =

X- w/xz- 4yz

2z

and

g(x,y,z)=

the following assertions hold:

* 1(xy,2) and g(x,y,z) are monotonicaly increasing
and monotonically decreasing on the variable
X (0,+¥), respectively;

e 1 (Xy,2 and g(xy,z) ae monotonically decreasing
and monotonically increasing on the variable
yl (0,+¥), respectively;

* 1(xy,2) and g(x,y,2) are monotonically decreasing
and monotonically increasing on the variable

Zi (0,+¥), respectively.
Lemma 2.5: The following statements are true.

- - + +
l;<H, [,>H;

+ + - -
I3>H;, I3;<H

3

II>H,
I <H,

Proof: According to Lemma2.4, we have

My +
+ | +
I; :f(rlM.ht.a;)>f(r,agf +h',alt) = H;

12

I; =g(r1M,nHa;)<g(rf,a§2 +hi*,all) =H;

12
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M
3=+ B2 a) > 1, 243+hM )= H

12 23
Iy =g(r + 22 ht ab) <g (it 225 4y a) = K
blZ b23
M
I3 =f () +%,h;,a;3) >f (¢, hY,a) =H;}
23
and

M
R a
|3 :g(r3M +b_i31h|§|

2

ag)<g(ry,hy',ag) =H;

This completes the proof.
MAIN RESULTS

We are now in a position to state and prove our
main result of this paper.

Theorem 3.1: Suppose that (A1), (A2), (A3) hold. Then
dynamic system (5) has at least eight positive w
periodic solutions.

Proof: In order to apply Lemma 2.3 to system (5), let

X=Z={x=(x(1),%,(t), ()" : x ()T C,,
x(t+w)=x(t),tT T,j=1,2,3}

be equipped with the norm

11X11= max

tl

|X{t)|+max |Xz(t)|+max|Xit)|

W

where |t is the Euclidean norm. Then X and Z are
Banach spaces. Let

N(x, 1) =F L (t1).Fo(t1).Fa(tl )"

Lx=(xP(t),x2(t),x2(t))"

Px = (%G‘)le(t)Dt,Vlv vaz(t)Dt,% QX(HD)"

Qz= ( Qzl(t)Dt Qz (t)Dt,— (;)23(t)Dt)T
wherexi X, 4 7,11 (0,1) and
Fu(tl)=r{t)- a, (e’
XU o0
_ lay(te - h(t)e x{t)

1+b_ (e g1 1®
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I q (t)aﬂ(t)elt t(t)) Xl(t t(1)
1
L+b,(f)e

(t-t(1) X3
] | azg(t) ><2t t(t e><31 h (t)e_xz(t)

1+b,, ()" e

Fo(tl)=r{t)+ x40

- ay(te

X5 (t-t (1)) xz(t t()

| g,(t)ay,(t)e
F.(tl)=r(t) + 1+b, (e R

- a,(t)ed” - hy(e "

With the above definitions, we obtain

KerL={xT X:x=h=(h,h,h)"T REtI T}
ImL={zl Z:C)zj(t)Dt:O,j:l,Z,B,tT T

P,Q are continuous projectors such that
ImP=KerL,ImL=KerQ=Im(l - Q)
ImL isclosed in Z and

dimKerL=3=codimImL

Therefore, L is is a Fredholm mapping of index
zero. Furthermore, the generalized inverse (to L)

K, :ImL ® DomL( KerP exists and is given by

KX = (X, %, %)
where
X, = (¥, (9 Ds- %Qvéxj(s)DsDt
forj=123. Thus

&l . 1. J
QN(X,| ) :(;WQNF;[(SJ )DSlWQWF 2(5,' )DS_

QI

and
Ko(l = QIN(x,1) = (Qu(t,1),Q,(t,1),Qq (1))’
where
Q)= §F (905 0 F (9DsDt
- [t- k- %Q(t- K))D]F |
forj=123.
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Obviously, QN and Kp(I-Q)N are continuous. By
using the Arzela-Ascoli theorem, one can show that

show that (K.(I1- QN)(W) is compact for any open

bounded set Wi X. Moreover, N(W) isclearly bounded.

Thus, N is L-compact on w for any open bounded set
W X.

Now we reach the position to search for at least
eight appropriate open bounded subsets W for the
application of Lemma2.3.

Consider the operator equation

Lx=INx,I), 1T (01 @)
we have
IxP(t)=1Fy(t,l)
[X2(t)=1 F,(t.1) @

Ix2(t)=1 F,(t,1)

Assume that (xi(t), %(t), %()"T X is a w-periodic
solution of (2) for a certain |1 (0,1). Then there exist
%, hiT 14( = 1,2,3) such that

Xj(Xj):I"[Plaxxj(t)vxj(hi):g‘llinxj(t)v j=1,2,3 (€)
From (2) and (3), we have
1F.(x,1)=0
[F,(x,1)=0 @
{ Fi(X;1)=0
and
iF,(h,1)=0
|
.|’.F2(h2,|)20 ®)
+F3(h3:| )=0
According to the first equation of (4), we have
ap€t +hie 17 £ ay, ()t +h(x )¢ "1
I X exl(xl ’(Xl))exz &)
=rn(x,) - 2 (X,) Q3,04 1050 rM
1+b,, (x,)e10? &1 14
or
a}lelec‘l) - g1 4 i <0
which implies that
Inl; < x,(x,)<Inl; (6)

By analogue arguments to the first equation of (5)
yields

Inl; < x,(h,)<Inl}

@
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By the second equation of (4), we obtain

aLe?® +hie 2™ £a,, (x,)e2 2 +h,(x,)e 2 %’

aiZ(Xz)< M i

<r(X,)+ r, +
b)) C by

or

M
L 2%(X,) M, By X, &) L
ake 272 - (1} +b_L2)e2 2’+hs <0
12

which implies that
Inl, < x,(x,)<Inl} ®)

By analogue arguments to the second equation of
(5) yields

Inl;< x,(h,)<Inl; ©)]
From the third equation of (4), we obtain

as " +hie " £ay ()€ +hy (x,)e

3y (Xs) <M+ iMe,
b23 (X3) : blé?:

<n(X)+
or
) M
asLse X3 Q‘g)_ (rgll +%)ex3(x3) +h; <0
23
which implies that

Inly < X;(X5)<Inl} (10)

By analogue arguments to the third equation of (5)
yields

Inly < x5(hy)<Inl; (11

On the other hand, from the first equation (4), we
obtain

M2 100 Lt 4 8nly w5 g
a;€ -ne bL 1
2

which implies that
X, (X,)>InH; or x,(x,)<InH; (12)
Similarly, by the first equation (5), we have

x,(h))>InH; or x,(h,)<InH; (13)

According to Lemma 2.5, it follows from (6), (7),
(12) and (13) that

Inl; < x,(h,) < x (x)<InH;
or

InH; < x,(h,) < x,(x,)<Inl}
and so

Inl; < x,(t)<InH; or InH; <x(t)<Inl; for"tT T (14)
According to the second equation of (4), we have

M+
2 a
ale’ 2" . rle' é‘2)+#+hg" >0
2

which implies
X,(X,)>InH} or x,(x,)<InH, (15)
Similarly, by the second equation of (5), we obtain
X,(h,)>InH; or x,(h,)<InH, (16)

According to Lemma 2.5, from (8), (9), (15) and
(16), we have

Inl, < %,(h,) < %,(X,)<InH;
or

InH; < x,(h,) < x,(x,)<Inl}
and so

Inl, < x,(t)<InH; or InH} <x¢t)<Inl; for "tT T (17)
By the third equation of (4), we obtain
alie?3®d _ pLes) 1 50
which yields
X3 (X5)>INH3 or X,(x;)<InH; (18)
Similarly, by the third equation of (5), we obtain
X3(h3)>InH; or x,(h,)<InH; (19)

By usng Lemma 25, from (10), (11), (18) and
(19), we get

Inl; < x5(h,) < X,(x;)<InH;
or
INH; < xy(h,) < %, (x;)<Inl
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and so

Inly < x,(t)<InH, or InH; < x()<Inly," tT T

(20

Itisobviousthat Inlf andinH},(j=1,2,3) areindependent of |. Now, let

W, ={x=(X,%,%)"T X|Inl; <xglInH;Inl, <x, <InH;,Inl, < x, <InH3}

W, ={x=(%,%,%)"T X]|Inl; < x <InH; Inl;, < x, <InH;,Inl% < x, <InH}

W, ={ X=(X,X,, %) T X]|Inl; <xgInH;Inl% <x, <InHj,Inl, < x, <InH3}

W, ={x=(%,%,%)"T X]|Inl; < x <InH; Inl% < x, <InH;,Inl} < x.< InH;}

W, ={x=(%,%,%)"T X|Inl; <xgInH;Inl} < x, <InH;,Inl;, < x, <InH3}

W, ={ x=(x,x%,%)"T X]|Inl; < x, <InH; Inl;, < x, <InH;,Inl;, < x, <InH}

W, ={x=(%,%,%)"T X|Inl; < x <InH; Inl;, < x, <InH;,Inl} < x.< InH;}

W, ={ X=(X,X,, %) T X]|Inl; <xglnHIInl% <x, <InH;,Inl% < x, <InH:}

Then it is obvious that W (j = 1,2,...,8) are bounded
open subsets of X, W( W =/ for itj withi;,j=1,2
.y 8. Thus, W (j = 1,2,...,8) satisfy the requitement (a)
inLemma2.3.

In the next, we show that condition (b) of

Lenma 23 holds, that is, QN(x,0) (000)" for
xT IWR{j=1,2,--,8). If isnot true, then there exists

constant vector x = (x, %, %) 1 W, and tif I(i =1, 2,
3) satisfy

lﬁ(tl)' au(tj)exl - hl(t])éxl =0

() -ax(t,)e? - hy(t,)e2=0 (21
i) - a5 (t,)e - hy(t,)e ™ =0
Therefore, we obtain
Inl; <x, <InH; or InH; <xgInlj
Inl, <x, <InH; or InH; <x ,<Inl%
Inl; <X, <InH; or InH; <x,<Inl}
This yields xT W(R{j=1,2,---8), which

contracts with the fact that x1 IW(\R{j=1,2,--8).

The condition (b) of Lemma2.3isvalid.
Finally, we show that the condition (c) of Lemma
2.3 holds. Noting that the algebraic equations:

69

irl(tl)' all(tl)eu - hl( t]) e'=0
fh(1) - ay(t,)e’ - hy(t,)e ¥ =0
() - ag(t.)e’ - h{t)e" =0

2

has eight distinct solutions:

(U,viw)i=(Inu,Inv,Inw.)
InH3 < X,(h,) < % (%5)<Inl

(U,vaw)=(Inu,Inv,Inw)
(U, vyaw)=(Inu,lnv,Inw)
(G, vew)=(Inu,nv, nw)
(Y,vewi=(Inu,lnv,Inw)
(d,vyw)=(Inu,lnv,Inw,)

(G, vgwd=(Inu,Iny,Iny)
where

_ (1) £4r2(t) - 4ay(t) h(1)
2a,(t,)

+

_ () £r () - day(to)h, (t,)
2a,(t,)

*
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_ ()£ - 4aq(t)hy ()

+

By Lemma 2.4, it easy to verify that

2a5( L)

Inl; <Inu_ <InH; <InH; <Inu, <Inl], Inl, <Inv_ <InH} <InH; <Inv, <Inl}, Inl; <Inw_ <InH; <InH} <Inw, <Inl}

and so (4, v, w)i W forj=1.2,..,8. SinceKer L =ImQ, we cantakeJ=1. A direct computation yields that

deg{ JQN(x,0),W,,(0,0,0)} =sign[(- a,(t)u" +

From the fact

P(1)- ) -

2L -2yt + 22 agyw +

: rz( tz) - azz(tz)V* -

£r3( 1) - ag(t)w -

we have

)

h3 (t*3 )]
w

hyt) _

u

hy(t,)

0 (23

*

\
ho( &

w

)

0

deg{ JQN(X,O),WJ,(O,O,O)T} :Sign[(g(tl) - 2311 (tl)U*)(rz( tz) - zazz(tz)v *)(I’3 (t3) - 2633('[ 3)W *)]

forj=1.2,..,8. Therefore,

deg{ JON(x,0),W,,(0,0,0) "} =sign[ (§(t,) - 2ay, (t,)u.)(5(L) - 28, (t,)v.) (1(ts) - 2a55(t)w.)]=1

deg{ JON(x,0),W;,(0,0,0)} =si gn[( (1) - 2a,,(t) u)(5 (1) - 2a,,(t,)v.) (K(ts) - 2855() W, )]=-1

deg{ JON(x,0),W;,(0,0,00} =sign[ (1 (1) - 2a,(t,) u Xr,(t,) - 2a,(t,)Vv ) (5(ts) - 2a5(HwW)]=-1,

deg{ JON(x,0),W;,(0,0,0)} =si gn[( (1) - 2a,(t)u.)(5 (L) - 2a,(t,)v ) (5(ts) - 28,5(LYw,)]=1

deg{ JON(x,0), W;;,(0,0,0)} =si gn[ (1 (1) - 2a,(t,)u. (5 (1) - 28, (t,)v.) (K(ts) - 285(t)w.)]=1

deg{ JON(x,0),W;,(0,0,0)} =sign[ (1 (1) - 2a,(t) u,)(5(t,) - 28,(t,)v. ) (K(ts) - 2855(t)wW.)]=-1

deg{ JON(x,0),W;,(0,0,0)} =sign[ (y () - 2a,(t) u,)(5 (1) - 28,(t,)v ) (§(ts) - 2a55(t)w,)]=1

deQ{JQN(X:O)’Waf(OrO:O)T} :Sign[(ﬁ(tl) - 2a11(tl)u+)( E( tz) - Zazz(tz)v+)(5(t3) - ?—aea(t?.) W+)] =-1

It follows that the condition (c) of Lemma 2.3
holds. Hence, the system (5) has at least eight positive
w-periodic solutions. This completes the proof.

Since the continuous system (3) (when

T=R,t(t)=0,y(t)=¢!" withj = 1,2,3 and the discrete

system (4) (when T=2z,t(t)=0,y(t)=€!" withj =1,

2, 3 are two specia cases of dynamic system (5), a
direct consequence of Theorem 3.1 is the following
corollary.
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Corollary 3.1: Under the requirements of Theorem 3.1,
(3) and (4) has at least eight positive w-periodic
solutions, respectively.

Remark 3.1: Our result indicates that the existence
result of eight periodic solutions for continuous system
(3) and discrete system (4) are verified. Therefore, the
study of dynamic system (5) on time scales avoids
proving the result twice, oncefor the continuous system
and once for the discrete system.
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Remark 3.2: Since there are many other time scales
than just the set of real numbers R or the set of integers
Z, we obtained a much more general result of dynamic
system (5) on time scales. Thus, our results obtained
(see Theorem 3.1) incorporate and extend a known
result [25] in the literature essentially a special cases
when the time scale is chosen as the real numbers and
the delay is zero.
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