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Abstract: In this paper we study the long time dynamics of solutions of Initial and Boundary Value 
Problem (IBVP) of the Korteweg-de Vries (hence-forth KdV) equation posed on a bounded domain: 
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It is shown, using Homotopy Perturbation Method (HPM), that if the boundary forcing h is periodic of 
period τ, then the solution u (forced oscillations) of the IBVP (*) at each spatial point becomes eventually 
time-periodic of period τ. In order to exhibit eventual periodicity we approximate the solution of the IBVP 
analytically using Homotopy Perturbation Method. To confirm our theoretical results we present some 
numerical experiments using Mathematica. 
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INTRODUCTION 
 
 Various physical phenomena in physics and 
engineering may be described by nonlinear ordinary or 
partial differential equations. Most of them are difficult 
to solve either theoretically or numerically. Recently 
there  has  been  much  attention  devoted  to  the search 
of better and computationally efficient methods for 
determining a solution, approximate or exact [2, 10, 
13], analytical or numerical [2, 5], to nonlinear models. 
There are many methods available to solve nonlinear 
ordinary or partial differential equations, for example, 
grid-based finite difference and finite element methods. 
Recently Homotopy Perturbation Methods [1, 3, 6, 7,9] 
have gained a lot of attention in the scientific 
community. This method presents an accurate and 
stable analytical approximate solution for integral 
equations or PDEs with a variety of boundary 
conditions. In traditional FDM and FEM, mesh 
generation for the problem domain is a pre-requisite for 
the numerical solutions. In some cases it becomes more 
expensive than solving the problem itself. 
 In many physical systems, which are nonlinear, 
dispersive and dissipative the asymptotic analysis of the 
governing differential equations in far-field and long-

wave approximations leads to the Korteweg-de Vries 
(KdV) equation. KdV equation is initially introduced to 
describe the lossless propagation of shallow water 
waves. It represents the long time evolution of wave 
phe-nomena, in which the effect of the nonlinear term is 
counterbalanced by the dispersion term. 
 In this paper, we study an Initial Boundary Value 
Problem (IBVP) for the Korteweg-de Vries (KdV) 
equation of the type 
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posed on a finite domain (0, 1). Guided by the outcome 
of laboratory experiments, interest is given to the long 
time effect of the boundary forcing h and large time 
behavior of solutions of IBVP (1.1). 
 In the experiments of Bona, Pritchard and Scott 
[4], a channel partly filled with water was mounted with 
a flap-type wave maker at one end. Each experiment 
commenced with water in the channel at rest. The 
wave-maker was activated and underwent periodic 
oscillations. The throw of the wave-maker and its 
frequency of oscillation were such that the surface 
waves  brought  into  existence were of small amplitude  



Studies in Nonlinear Sci., 1 (3): 57-62, 2010 

58 

 
and long wavelength, so it could be modeled by a 
Korteweg-de Vries (KdV) type equation posed in a 
quarter plane: 
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where α and γ are nonnegative constants that are 
proportional to the strength of the damping effect. The 
wave-maker is modeled by the boundary value function 
h = h(t) which is assumed to be a periodic function of 
period τ. 
 It was observed in the experiments that at each 
fixed station down the channel, for example at a spatial 
point x0, the wave motion u(x0, t) rapidly became 
periodic of the same period as that of the boundary 
forcing function h(t). This observation led to the 
following conjecture for solutions of IBVP (1.2). 
 Conjecture If the boundary forcing h is a periodic 
function of period τ, then the solution u of IBVP (1.2) 
eventually becomes time-periodic of period τ, i.e., 
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 Recently, the IBVP for KdV type equations on 
finite domain have received much attention. The KdV 
equation is a model equation for water waves in a 
channel using long-wave approximation and these 
equations are usually considered on unbounded 
domains. But the fluid regions are always finite in most 
of the physical applications and fluid dynamical 
experiments as well as numerical computations. So it is 
more realistic to consider the KdV equation on a 
bounded domain. 
 In the most of the previous related works, it was 
assumed that one or both of the damping coefficients α 
and γ in (1.2) are greater than zero. More recently, 
Zhang and Usman [11, 12], along with other results, 
proved that without any explicit damping term (both α 
= 0, γ = 0), solution u of the IBVP (1.1) posed on a 
finite domain (0, 1), is asymptotically time-periodic if 
the boundary forcing h is periodic with small amplitude 
and the initial data φ(x) is small in certain space. In 
(1.1) the wave-maker is putting energy in a finite 
channel from the left boundary (x = 0) while the right 
end (x = 1) of  the  channel  is  free. In fact, if we set 
h(t) = 0 along with both α = γ = 0 then by multiplying 
the equation by u, integration by parts and the boundary 
conditions yield 
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for any t ≥0. This shows that there is a weak dissipation 
from the left end of the boundary, although there is no 
explicit dissipation in the system. 
 In  this  paper, we study the IBVP (1.1) for the 
KdV equation on a bounded domain. We obtain an 
analytical solution of the problem using the Homotopy 
Perturbation method [7, 8] and study the eventually 
periodicity of the solution. We show that the solution 
obtained  is  time  periodic  with the same period as that 
of the boundary function h. We do not require the 
amplitude of the boundary function to be small which is 
crucial in the theoretical results [11]. 
 The paper is organized as follows: Section 2 is 
devoted  to  analytical  approximate  solution of IBVP 
of  the  KdV  equation  on  a  bounded  domain  using 
the Homotopy Perturbation method. Finally the 
numerical experiments using Mathematica are 
presented in section 3. 
 

ANALYTICAL SOLUTION  
AND EVENTUAL PERIODICITY 

 
 In the literature there are many mathematical 
methods available to solve nonlinear ordinary and 
partial differential equations. However, most of them 
require tedious analysis or large memory computers to 
handle  numerical  techniques.  Recently  Ji-Huan He 
[6-8] suggested some new approximate analytical 
methods overcoming the shortcomings of many 
available methods. 
 In order to obtain an analytical approximate 
solution of the IBVP (1.1) for KdV equation, consider a 
one-parameter family of IBVPs 
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where the parameter p∈[0,1]. 
If p = 0, we have a simple linear problem 
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whose solution is 
 
                           2

0 )1)((),( xthtxu −=  (2.3) 

 
 If p = 1, we have the original problem (1.1). The 
one  parameter  family  of problems (2.1) is also known  
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as homotopy. Let the solution u(x, t) of the system (2.1) 
be expressed as an infinite series, that is, 
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 is a series solution of the IBVP (1.1), where the 
components ui(x,t) are such that  
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Substituting (2.4) in (2.1), we have 
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where ui,z denotes the derivative of ui with respect to z. 
Equating coefficients of p, p2,…, we obtain 
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and so on. Solving (2.6) and (2.7), we obtain 
 

            

2 4
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3
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h(t)
u (x,t) (1 x) (1 x)

12
h (t) h( t )

(1 x ) (1 x)
30 60

 = − − − 

 ′
 + − − − −    

   (2.8) 
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1 h(t) h ( t ) h( t)u (x,t) (1 x) (1 x)
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1 h (t) h (t)h(t) h( t)
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 ′′ ′ ′
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1 h (t) h ( t ) h (t)h(t)
(1 x) (1 x)
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1 7 h ( t ) 7h(t)h(t)
(1 x) (1 x)

504 30 60
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

 ′′ ′
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 
 ′  + − + − − −    

 (2.9) 

 
 Hence, three terms approximate solution of the 
IBVP (1.1) for the KdV equation is  
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where u0,  u1 and u2 are given by (2.3), (2.8) and (2.9) 
respectively. 
 Now we present the plots of solutions at different 
spatial points to show the time periodicity. 
 

RESULTS AND DISCUSSION 
 
 In this section we present the numerical 
experiments investigating the eventual periodicity of 
the solutions for (1.1) with periodic forcing h(t). Figure 
1 is the 3D and contour plots of u(x, t) with h(t) = 0.1 
sin(2pt). Figures 2 are plots of u(x, t) for x = 0.5 and 0.7 
showing eventual periodicity. In Fig. 3 the left graph 
shows the time versus amplitude plots of u0, u1, u2, u3 
and h. Fig. 3, right plot shows u(x, t) at x = 0.5 
including the another term u3 of the series solution 
exhibiting the eventual periodicity. 
 In our second set of numerical experiment Fig. 4 
displays the 3D and contour plots of u(x, t) with forcing 
h(t) = 10 sin(2pt). Figure 5 shows eventual periodicity 
of u(x, t) at x = 0.5 and x = 0.7, when the boundary 
forcing has large amplitude of 10. In Fig. 6 the left 
graph shows the time versus amplitude plots of u0, u1, 
u2, u3 and h. We have computed the next order term u3 
in the solution, using Mathematica and due to length of 
the expression we have not presented its analytical 
expression. This term is small in order and does not 
make significant difference. In Fig. 6 right plot shows 
u(x, t) at x = 0.5 including the term u3 of the series 
solution exhibiting the eventual periodicity. All of the 
numerical simulations are presented here are for the 
time interval such that the wave-front generated by the 
boundary forcing has not reached at the right end x = 1. 
 
Remarks: In this paper we have studied analytical 
solutions for the initial-boundary-value problem of the 
KdV equation posed on a finite interval (0, 1): 
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 We have applied the Homotopy Perturbation (HP) 
method to obtain the solution of an IBVP of the KdV 
equation in terms of a convergent series with easily 
computable components. It is shown that if the 
boundary forcing is periodic, then any solution of (3.1) 
is  asymptotically  time  periodic  of  the same period as 
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Fig. 1: 3D Plot of the solution (left graph) and contour plot (right graph) with h(t)=0.1 sin(2pt) 
 

          
 
Fig. 2: u(x, t) at x = 0.5 (left graph) and at x = 0.7 (right graph) 
  

          
 
Fig. 3: u0, u1, u2, u3 and h(t) (left graph) and  u = u0+u1+u2+u3 (right graph) at x = 0.5 
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Fig. 4: 3D Plot of the solution (left graph) and contour plot (right graph) with h(t)=10 sin(2pt) 
 

          
 
Fig. 5: u(x, t) at x = 0.5 (left graph) and at x = 0.7 (right graph) 
  

          
 
Fig. 6: u0, u1, u2, u3 and h(t) (left graph) and u = u0+u1+u2+u3 (right graph) at x = 0.5 
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the boundary forcing. There is no restriction imposed 
on the size of the boundary forcing in this solution. 
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