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New Twelfth-Order M odifications of Jarratt’s Method for Solving Nonlinear Equations
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Abstract: In this paper we construct new modifications of Jarratt’s method for solving nonlinear equations
based on the circle of curvature. A precise analysis of convergence is given to show that the new methods
are of twelfth-order. Numerical examples are provided to illustrate that the presented methods achieve
faster convergence in comparison with other known methods and can compete with the existing methods.
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INTRODUCTION

Many problems in applied mathematics and
engineering fields are reduced to finding the solution
of a nonlinear equation | (X) 0 and require the
employment of an iterative method. In this work we are
concerned with iterative methods to find a simple root
X,i.e, '(X)=0and ! 4X )0, of anonlinear equation
I (X) = 0 that uses| and | ¢but not the higher derivatives
of |. There are many iterative methods such as
Newton's method and its variants [1-4], Secant method
[5], Halley's method [1-3, 6], Chebyshev method [1-4]
and Jarratt’'s method [7]. Among these methods
Newton's method is the most widely used method for
the calculation of X , which is defined by
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where ¥ is an initial approximation sufficiently close to
X . It is well known that this method is quadratically
convergent [3].

Many researchers developed efficient
modifications of existing iterative methods such as
those mentioned above in a number of ways to improve
their order of convergence at the expense of additional
evaluations of functions and/or derivatives mostly
at the point iterated by the method, see [8-17] and
the references therein. All these modifications are
targeted at increasing the order of convergence with a
view of increasing the efficiency of the method. Most

of these focused on modifications of Newton’s method
[3, 12, 13, 17] and others on variants of the Chebyshev-
Halley methods free from second derivative [10, 11].
Recently, Hou et al. [12] presented a new twelfth-order
family of methods which improves an eighth-order
method [13], a modified Newton’ smethod.

In this paper we are concerned with the
construction of new higher order methods which
improve Jarratt’s method in the order and the
efficiency. The Jarratt method [7] is given by

f(x.)

Xn+1=Xn - ‘J ( )ﬁ )f'— (2)
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whose order is known to be four. Several efficient
modifications of Jarratt’s method have been developed
and applied in [9, 14-16] to improve the order of
convergence. From a practical point of view, it is
generally perceived that it is important to improve the
order of convergence of this method. We present
several higher order modifications of Jarratt’s method.
By analysis of convergence it is shown that their order
of convergence is twelve and we demonstrate by
numerical examples their performance in comparison
with the other known methods.
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NEW HIGHER ORDER MODIFICATIONS
OF JARRATT'SMETHOD AND
CONVERGENCE ANALYSS

In this section we develop higher order
modifications of Jarratt’s method given by (2). Put

f(x,)

z,=% -4 (%, )f(x)

By an eementary caculation, the circle of
curvature at (z,, | z,)) can be found to be
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At the intersection point (X1, 0) of equation (3)
with the x-axis, we get
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Equation (3) can further be rewritten asfollows

F(7)?+21(z) B @)

f"(z,)
=7 - n 5
Xn1=Z, +2f.(zn)(1+f.(zn)2) ( )

*(z,)

n+l

By replacing %1 on the right-hand side of (5) by
the Newton iterate, we obtain the new iterative method

(@) (@) (2) +2f'(2)f(2,)A+F'(2)°) (4 ©)
2f'(z,)2(A+1'(2,)%) - f(z,)f"(z,)
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We observe that the method (6) requires the
evaluation of the second derivative. To derive its
second-derivative-free variant, which is important from
the practical point of view, let us consider the following
approximation

f'(w,)- *(z,)

f'(z,) » )
W, - Z,
where
R ()
f'(z,)
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thisgiving

f(z)[2+3f°(7)- f'(z,)f'(w,)]
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Another new method may be derived by
manipulating equation (4) in a different way. Replacing
L2
the first term of (4), (ku1-zo) With o) 2
ef'(z) g
Newton'siterate (1), resultsin the following method

from

Hz)f (7)) +2f(z,)f'(2,)°
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By using the approximation defined by (7), we
obtain the second-derivative-free variant of (9)

_ 1€ f(W)uf(z)
X1 =2Zp - Eg’a f (Z ) f (Z ) (10)

For the method defined by (10), we have the
following analysis of convergence. A similar analysis
can be donefor (6), (8) and (9).

Theorem 2.1 Assume that the function | :Di R® R for
an open interval D has a simple root X in D. If | (X) is
sufficiently smooth in a neighborhood of the root X,
then the method given by (10) is of order twelve.

Proof: Using Taylor expansion and taking into account
(x') =0, we have

f(x,)=1"(X)[e, +ce’+ ce)+-+Cuel +O€e)]  (12)
wheree, =x,-X and
(k)
c, = 1& k=23,
Kl F (x)

and

f'(%,) = 1'(X)[1+2c,8, + 8]+ +12c,6; +O(e7)] (12)

Dividing (11) by (12) givesus

f(x,)
£ (X ) =& - Czeﬁ +2(C2 %)en *e

+ (- 1024c%' + 7936¢3C, + - -+
+0(ey)

- 11(&2)6'\12 (13)

so that
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Voo X =26 +2cei- 2ei-c)e,
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By expanding ! dy,,) about x , we find
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From (11), (12) and (15) we therefore have
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Expanding ! (z,) and ! 4z,) about X , we get
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Expanding ! {w,,) about X' produces
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It then follows from (17), (19), (20) and (22) that
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This means that the method given by (10) is of
twelfth-order.

NUMERICAL EXAMPLES

We present some numerical test results for various
iterative methods. The following methods were
considered and compared: Newton's method (1) (NM),
Jarratt’s method (2) (M), the Hou-Li twelfth-order
method [12] (HM) and our new curvature based method
(10) (PM).

All computations were done using Maple package
with 128 digit floating point arithmetic (Digits.=128).
We accept an approximate solution rather than the exact
root, depending on the precision (€ of the computer.
The following stopping criteria are used for computer
programs: (i)Xn+1-%|<& (ii) | (%+1)l<e and so, when the
stoppi ng criterion is satisfied, X1 is taken as the exact
root X computed. For numerical illustrations in this
section we used the fixed stopping criterion e = 10%°.
We used the following test functions and display the
computed approximate zeros X :

f(x)=x"- € -3x+2
X" = 0.25753028543986076045536730493724178

f,(x) =cosx- X,
X =0.73908513321516064165531208767387340

f,(x) = x*- 10,
X' = 2.15443469003188372175929356651935049
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f,(x) =€+ x- 20,

Table3: |3, x0o=4.0

X' = 2.84243895378444706781658594015095007 NM M HM PM
Ko-X'| 9.17e-37  5.81e-82 2.90e-26 7.11e-41
f{x)=(x+2)e -1 '(x) 54472 0 0 0
X = -0.44285440100238858314132799999933681 IT 8 5 3 3
f (x) =xe" - sSin®x +3CoSX +5, Table 4: {4, %0 =0.0
X" =-1.2076478271309189270094167584 NM M HM PM
Ko-X'| 8.42e-28  1.56e-69 5.10e-26 2.36e-77
fo(X) =2xcosx+ X - 3, ' (Xn) 6.08e-54 0 -8.01e+07 O
X =- 3.5322516915364759644598258508 IT 14 6 52 4
f&(X):\/;-i-a Table5: |5, Xo = 2.0
) X NM M HM PM
X =9.6335955628326951924063127092 KX 913638 175539 558654 T 005138
! (Xn) 9.52¢-75  2.18e-116 O 0
f{x)=Inx+~/x - 5, IT 10 5 4 4
X =8.3094326942315717953469556827
Table 6: | 6, Xo =-1.0
flo(x) =%+ 4x* - 10, NM M AN PM
X" =1.3652300134140968457608068290 kx| 863633 539650 329630 2156101
' (Xn) -2.27e-63  -1.10e-126  -1.10e-126  1.20e-126
f,,(x) =x° +x - 10000, T 7 4 3 3
X" =6.3087771299726890947675717718
Table7: | 7, X0 =-4.8
The numerical results pre;eented in the tables shown N N v S
below demonstrate the efficiency of ame of the new
methods presented in this contribution, which was  Kox | 1.36e-38  1.20e-35  4.45e-87  1.00e-127
arbitrarily chosen. Notice that the number of iterations 1 (xn)  -7.55e-76 0 0 0
(IT) is given aong with the value of the function at the IT 9 5 6 4
last iteration | (X,). The new method was superior in
most of 11 cases to the Hou-Li method, which isof the  Tahle8: !, x0=15.5
same order as ours. Besides, it is observed that our NM ™ am PM
method showed faster convergence than the classical
well-known methods. Thereforge we conclude that the !X(");X)I .lffjeiooz ;'66&60 (1)'04649
newly presented methods can be competitive with the A :
other methods known in the literature. IT 7 4 3
Table1:!1, X0 =20 Table 9: | g, Xo = 11.9
NM M HM PM NM M HM PM
[Xn-x"| 9.10e-28 4.17e-95 8.34e-82 1.99e-51 Xn-X | 1.05e-26 1.73e-66 4.90e-50 0
i (xn)  2.92e-55  -1.00e-127 -1.00e-127 -1.00e-127  !(x,)  -1.39e-54 -1.00e-127 -1.00e-127  1.00e-127
IT 6 5 4 3 IT 6 4 3 3
Table2: |5, x0=15 Table 10: | 10, Xo = 1.6
NM M HM PM NM M HM PM
XX | 3.19e-32  7.91e52 1.45¢-52 8.20e-118 Ko-X| 1.26e-31  2.42e-65 1.02e-60 0
! (Xn) -3.76e-64 0 0 0 ' (Xn) 1.28¢-61  -6.00e-127 -6.00e-127 -6.00e-127
IT 6 4 3 3 IT 6 4 3 3
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Table 11: : 11, Xo = 9.8

NM M HM PM

Mox] 137648 748661  2.61e108 2.02628

(x) 476693 0 0 0

IT 9 5 4 3
CONCLUSION

In this paper we presented new efficient twelfth-
order modifications of Jarratt’s method for solving
nonlinear equations, which are based on the circle of
curvature and require two function-and four first
derivative-evaluations per iteration. From numerical
experiments we conclude that for several nonlinear test
functions our method shows faster convergence than
the other existing methods in @mparison and has at
least equal performance over those methods.
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