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Abstract: In this paper we construct new modifications of Jarratt’s method for solving nonlinear equations 
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faster convergence in comparison with other known methods and can compete with the existing methods. 
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INTRODUCTION 
 
 Many   problems   in    applied    mathematics   and  
engineering  fields  are  reduced  to  finding the solution  
of a nonlinear equation ƒ(x) = 0 and require the 
employment of an iterative method. In this work we are 
concerned with iterative methods to find a simple root 
x*, i.e., ƒ(x*) = 0 and ƒ′(x*)≠0, of a nonlinear equation 
ƒ(x) = 0 that uses ƒ and ƒ′ but not the higher derivatives 
of ƒ. There are many iterative methods such as 
Newton's method and its variants [1-4], Secant method 
[5], Halley's method [1-3, 6], Chebyshev method [1-4] 
and Jarratt’s method [7]. Among these methods 
Newton's method is the most widely used method for 
the calculation of x*, which is defined by 
 

                            n
n 1 n

n

f ( x )
x x

f ' ( x )+ = −  (1) 

 
where x0 is an initial approximation sufficiently close to 
x*. It is well known that this method is quadratically 
convergent [3]. 
 Many researchers developed efficient 
modifications of existing iterative methods such as 
those mentioned above in a number of ways to improve 
their order of convergence at the expense of additional 
evaluations  of  functions   and/or  derivatives  mostly  
at  the  point  iterated  by  the  method, see [8-17] and 
the references therein. All these modifications are 
targeted at increasing the order of convergence with a 
view of increasing the efficiency of the method. Most 

of these focused on modifications of Newton’s method 
[3, 12, 13, 17] and others on variants of the Chebyshev-
Halley methods free from second derivative [10, 11]. 
Recently, Hou et al. [12] presented a new twelfth-order 
family of methods which improves an eighth-order 
method [13], a modified Newton’s method.  
 In this paper we are concerned with the 
construction of new higher order methods which 
improve Jarratt’s method in the order and the 
efficiency. The Jarratt method [7] is given by  
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whose order is known to be four. Several efficient 
modifications of Jarratt’s method have been developed 
and applied in [9, 14-16] to improve the order of 
convergence. From a practical point of view, it is 
generally perceived that it is important to improve the 
order of convergence of this method. We present 
several higher order modifications of Jarratt’s method. 
By analysis of convergence it is shown that their order 
of convergence is twelve and we demonstrate by 
numerical examples their performance in comparison 
with the other known methods. 
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NEW HIGHER ORDER MODIFICATIONS 

OF JARRATT’S METHOD AND 
CONVERGENCE ANALYSIS 

 
 In this section we develop higher order 
modifications of Jarratt’s method given by (2). Put  
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f ' (x )
= −  

 
 By an elementary calculation, the circle of 
curvature at (zn, ƒ′(zn)) can be found to be 
 

         

22
n n

n
n

22 2 3
n n

n 2
n n

f ' (z )[1 f ' (z ) ]x z
f' '(z )

1 f ' (z ) (1 f ' (z ) )y f(z )
f ''(z ) f ''(z )

 +− + 
 

 + ++ − − = 
 

 (3) 

 
 At the intersection point (xn+1, 0) of equation (3) 
with the x-axis, we get 
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Equation (3) can further be rewritten as follows 
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 By replacing xn+1 on the right-hand side of (5) by 
the Newton iterate, we obtain the new iterative method 
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 We observe that the method (6) requires the 
evaluation of the second derivative. To derive its 
second-derivative-free variant, which is important from 
the practical point of view, let us consider the following 
approximation 
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 Another new method may be derived by 
manipulating equation (4) in a different way. Replacing 

the first term of (4), (xn+1-zn)2, with 
2
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 from 

Newton's iterate (1), results in the following method 
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 By using the approximation defined by (7), we 
obtain the second-derivative-free variant of (9)  
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 For the method defined by (10), we have the 
following analysis of convergence. A similar analysis 
can be done for (6), (8) and (9). 
 
Theorem 2.1 Assume that the function ƒ:D⊂R→R for 
an open interval D has a simple root x* in D. If ƒ(x) is 
sufficiently smooth in a neighborhood of the root x*, 
then the method given by (10) is of order twelve. 
 
Proof: Using Taylor expansion and taking into account 
ƒ(x*) = 0, we have 
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Dividing (11) by (12) gives us 
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so that 
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By expanding ƒ′(yn) about x*, we find 
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From (11), (12) and (15) we therefore have 
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This immediately yields 
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Expanding ƒ(zn) and ƒ′(zn) about x*, we get 
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respectively. Dividing (18) by (19) gives us 
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Hence we obtain  
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Expanding ƒ′(wn) about x* produces 
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It then follows from (17), (19), (20) and (22) that 
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 This means that the method given by (10) is of 
twelfth-order. 
 

NUMERICAL EXAMPLES 
 
 We present some numerical test results for various 
iterative methods. The following methods were 
considered and compared: Newton’s method (1) (NM), 
Jarratt’s method (2) (JM), the Hou-Li twelfth-order 
method [12] (HM) and our new curvature based method 
(10) (PM). 
 All computations were done using Maple package 
with 128 digit floating point arithmetic (Digits:=128). 
We accept an approximate solution rather than the exact 
root, depending on the precision (ε) of the computer. 
The following stopping criteria are used for computer 
programs: (i)|xn+1-xn|<ε, (ii) |ƒ(xn+1)|<ε and so, when the 
stopping criterion is satisfied, xn+1 is taken as the exact 
root x* computed. For numerical illustrations in this 
section we used the fixed stopping criterion ε = 10-25. 
We used the following test functions and display the 
computed approximate zeros x*: 
 

2 x
1

*

f ( x ) x e 3x 2,

x 0.25753028543986076045536730493724178

= − − +

=  
 

2
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x 0.73908513321516064165531208767387340

= −

=  
 

3
3
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f (x) x 10,

x 2.15443469003188372175929356651935049

= −

=  
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 The numerical results presented in the tables shown 
below demonstrate the efficiency of one of the new 
methods presented in this contribution, which was 
arbitrarily chosen. Notice that the number of iterations 
(IT) is given along with the value of the function at the 
last iteration ƒ(xn). The new method was superior in 
most of 11 cases to the Hou-Li method, which is of the 
same order as ours. Besides, it is observed that our 
method showed faster convergence than the classical 
well-known methods. Therefore we conclude that the 
newly presented methods can be competitive with the 
other methods known in the literature. 
 
Table 1: ƒ1, x0 = 2.0 

 NM JM HM PM 

|xn-x*| 9.10e-28 4.17e-95 8.34e-82 1.99e-51 

ƒ(xn) 2.92e-55 -1.00e-127 -1.00e-127 -1.00e-127 

IT  6 5 4 3 

 

Table 2: ƒ2, x0 = 1.5 

 NM JM HM PM 

|xn-x*| 3.19e-32 7.91e-52 1.45e-52 8.20e-118 

ƒ(xn) -3.76e-64 0 0 0  

IT  6 4 3 3 

 

Table 3: ƒ3, x0 = 4.0 

 NM JM HM PM 

|xn-x*| 9.17e-37 5.81e-82 2.90e-26 7.11e-41 

ƒ(xn) 5.44e-72 0 0 0 

IT  8 5 3 3 

 

Table 4: ƒ4, x0 = 0.0 

 NM JM HM PM 

|xn-x*| 8.42e-28 1.56e-69 5.10e-26 2.36e-77 

ƒ(xn) 6.08e-54 0 -8.01e+07 0 

IT  14 6 52 4 

 

Table 5: ƒ5, x0 = 2.0 

 NM JM HM PM 

|xn-x*| 9.13e-38 1.75e-29 2.28e-54 4.00e-128 

ƒ(xn) 9.52e-75 2.18e-116 0 0 

IT  10 5 4 4 

 

Table 6: ƒ6, x0 =-1.0 

 NM JM HM PM 

|xn-x*| 8.63e-33 2.39e-50 3.29e-30 4.15e-101 

ƒ(xn) -2.27e-63 -1.10e-126 -1.10e-126 1.20e-126  

IT  7 4 3 3 

 

Table 7: ƒ7, x0 =-4.8 

 NM JM HM PM 

|xn-x*| 1.36e-38 1.20e-35 4.45e-87 1.00e-127 

ƒ(xn) -7.55e-76 0 0 0  

IT  9 5 6 4 

 

Table 8: ƒ8, x0 = 15.5 

 NM JM HM PM 

|xn-x*| 1.48e-50 1.66e-60 1.04e-49 0 

ƒ(xn) -1.17e-102 0 0 0  

IT  7 4 3 3 

 

Table 9: ƒ9, x0 = 11.9 

 NM JM HM PM 

|xn-x*| 1.05e-26 1.73e-66 4.90e-50 0 

ƒ(xn) -1.39e-54 -1.00e-127 -1.00e-127 1.00e-127  

IT  6 4 3 3 

 

Table 10: ƒ10, x0 = 1.6 

 NM JM HM PM 

|xn-x*| 1.26e-31 2.42e-65 1.02e-60 0 

ƒ(xn) 1.28e-61 -6.00e-127 -6.00e-127 -6.00e-127  

IT  6 4 3 3 
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Table 11: ƒ11, x0 = 9.8 

 NM JM HM PM 

|xn-x*| 1.37e-48 7.48e-61 2.61e-108 2.02e-28 

ƒ(xn) 4.76e-93 0 0 0  

IT  9 5 4 3 

 
CONCLUSION 

 
 In this paper we presented new efficient twelfth-
order modifications of Jarratt’s method for solving 
nonlinear equations, which are based on the circle of 
curvature and require two function-and four first 
derivative-evaluations per iteration. From numerical 
experiments we conclude that for several nonlinear test 
functions our method shows faster convergence than 
the other existing methods in comparison and has at 
least equal performance over those methods. 
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