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Abstract: In this paper, an analytic technique, namely the Homotopy Analysis Method (HAM) has been 
applied for solving Richards’ equation which is one of the most well-known equations to describe the 
behavior of the infiltration of unsaturated zones in soil as a porous medium. The results show that this 
method is very efficient and convenient and can be applied to a large class of problems. Comparisons of the 
results obtained by the HAM with that obtained by the ADM and MADM suggest that both the ADM and 
MADM are special case of the HAM.  
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INTRODUCTION 
 
 Many researchers have been involved in modeling 
water  movement  in  an  unsaturated  porous  material 
[4, 7, 8]. Richards [20] derived a governing equation for 
water flow in soil based on continuum mechanics. In 
this model, the continuity equation was coupled with 
Darcy’s law as a momentum equation. The following 
equation is known as the one-dimensional form of 
Richards equation: 
 

                       u u
(D K)

t z z
∂ ∂ ∂

= −
∂ ∂ ∂

 (1) 

 
where u is unsaturated soil moisture content, K is 
conductivity and D is soil water diffusivity. The 
sophistication of the analytical and numerical methods 
that are available to solve the governing equation of 
unsaturated flow in soils (Richards equation) makes it 
necessary to have suitable models for parameters in the 
equation. Several methods are available for the 
estimation of such parameters, such as conductivity and 
water diffusivity [21]. Basically, there are three 
commonly used models: (i) Brook-Coreys model [3, 6], 
(ii) the van Genuchten model and (iii) the exponential 
model. The Brooks-Corey model introduces a well-
defined air-entry value that is associated with the 
largest pore size, assuming complete wet ability 
Brooks-Corey model soils can be simplified to the 
following  equations  by  some  further  considerations 
[6, 26]:  
 

                     k
0K(u) K u form 1= ≥  (2) 

                n
0D(u) D (n 1)u form 1= + ≥  (3) 

 
where K0, D0, n and k are constants representing soil 
properties such as pore-size dis tribution, particle shape, 
etc. In these relations, u is scaled between 0 and 1 and 
the form of diffusivity is normalized so that  
 

1

0

D(u)d(u) 1 n= ∀∫  

 
Most of the results in this paper can be applied to the 
general values of k and n. It is believed that the Brook-
Corey model is widely used because of its well-defined 
configuration. There are several analytical and 
numerical solutions to Richards equation considering 
the Brook-Corey model. The choice n = 0 and k = 0 in 
Eqs. (2) and (3) yields the classic Burgers equations. 
For general values of k and n, the generalized Burgers 
equation, which was the focus of several researchers 
including [11], is obtained. In the special case n = 0, 
Richards equation reduces to a linear equation. 
Richards equation with other models was also solved 
numerically and by various innovative and common 
analytical methods. Some of these solutions are limited 
to very simple geometrical and initial conditions. In the 
last 30 years many finite difference and finite element 
numerical solutions were developed, even in 2D and 
3D. Another numerical method, the finite volume 
method, looks quite promising for solving Richards 
equation, especially when sharp infiltration fronts 
develop   and   must  be  approximated  on  unstructured  
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multidimensional grids. For instance, a few researchers 
have tried to solve the equation by the Adomian 
decomposition method (ADM) as an analytical series 
solution [22-24]. In this study, a simplified Brooks-
Corey model (Eqs. (2) and (3)) was applied on 
Richards’ equation [Eq. (1)]. However, two cases for 
conductivity exponents (with equal soil water 
diffusivity) and the solutions were tried. The hyperbolic 
tangent function is  commonly applied to solve these 
transform equations [25]. The general form of Burgers 
equation in the order of (n,1) is:  
 

             n
t x xxu a(u ) bu 0, n 1,a,b 1+ + = ≥ ≠  (4) 

 
and its exact solution is  
 

          
1

n 1c c(n 1)
u(x,t) ( (1 tanh[ (x ct)])

2a 2b
−−

= + −  (5) 

 
 In these cases , Richard equation coincides with 
Burger equation (n,1), where u is water content, x is 
depth (cm) and c is an arbitrary coefficient.In 1992, 
Liao [16] employed the basic ideas of the homotopy in 
topology to propose a general analytic method for 
nonlinear problems, namely Homotopy Analysis 
Method (HAM), [16-18]. This method is successfully 
applied  to  solve  many  types  of  nonlinear  problems 
[2, 9, 10, 14, 15, 19]. 
 

BASIC IDEA OF HAM 
 
We consider the following differential equation  
 
                              N[u( )] 0τ =  (6) 
 
where N is a nonlinear operator, τ denotes independent 
variable, u (τ) is an unknown function, respectively. For 
simplicity, we ignore all boundary or initial conditions, 
which can be treated in the similar way. By means of 
generalizing the traditional homotopy method, Liao 
[17] constructs the so-called zero-order deformation 
equation  
 
         0(1 p)L[ ( ;p) u ( )] phH( ) N [ ( ; p ) ]− φ τ − τ = τ φ τ  (7)  

 
where p∈[0,1] is the embedding parameter, h≠0 is a 
non-zero auxiliary parameter, H(τ) is an auxiliary 
function, L is an auxiliary linear operator, u0(τ) is an 
initial guess of is a unknown function, respectively. It is 
important, that one has great freedom to choose 
auxiliary  things  in  HAM. Obviously, when p = 0 and 
p = 1, it holds  

 
                0( ;0) u ( ), ( ;1) u( )φ τ = τ φ τ = τ  (8)  

 
respectively. Thus, as p increases from 0 to 1, the 
solution φ(τ;p) varies from the initial guess u0(τ) to the 
solution u(τ). Expanding φ(τ;p) in Taylor series with 
respect to p, we have 
 

                 m
0 m

m 1

( ;p) u ( ) u ( )p
+∞

=

φ τ = τ + τ∑  (9) 

Where 

                     
m

m m
p 0

1 ( ; p )u ( )
m! p

=

∂ φ ττ =
∂

 (10) 

 
 If the auxiliary linear operator, the initial guess, the 
auxiliary parameter h and the auxiliary function are 
properly chosen, the series (9) converges at p = 1, then 
we have 
 

                     0 m
m 1

u( ) u ( ) u ( )
+∞

=

τ = τ + τ∑  (11) 

 
which must be one of solutions of original nonlinear 
equation, as proved by liao [17]. As h =-1 and H(τ) = 1, 
Eq. (7) become  
 
              0(1 p)L[ ( ;p) u ( )] pN[ ( ;p)] 0− φ τ − τ + φ τ =  (12)  
 
Which is used mostly in the homotopy perturbation 
method, where as the solution obtained directly, 
without using Taylor series [12, 13]. According to the 
definition (10), the governing equation can be deduced 
from the zero-order deformation equation (7). 
Define the vector 
 

n 0 1 nu {u ( ),u ( ), ,u ( )}
→

= τ τ τL  

 
 Differentiating equation (7) m times with respect to 
the embedding parameter p and then setting p = 0 and 
finally dividing them by m!, we have the so-called mth-
order deformation equation 
 

           m 1m m m 1 mL[u ( ) u ( )] hH( ) R ( u )
→

−−τ − χ τ = τ  (13)  
 
 subject to initial condition 
 

                      m
m

u (x,0)
u (x,0) 0, 0

t
∂

= =
∂

 (14) 

 
Where 
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m 1

m 1m m 1
p 0

1 N[ ( ; p)]R ( u )
(m 1)! p

−→
− −

=

∂ φ τ=
− ∂

 (15) 

And 

                          m
0 m 1
1 m 1

≤
χ =  >

 (16) 

 
 It should be emphasized that um(τ) for m≥1 is 
governed by the linear equation (13) with the linear 
boundary conditions that come from original problem, 
which can be easily solved by symbolic computation 
software such as Mathematica. If Eq. (6) admits unique 
solution, then this method will produce the unique 
solution. If equation (6) does not possess unique 
solution, the HAM will give a solution among many 
other (possible) solutions. For the convergence of the 
above method we refer the reader to Liao’s work [17]. 
 

APPLICATIONS 
 
 In this section we apply HAM for solving Richards 
equation. Further we compare the gained result with 
both exact and MADM. 
 
Case 1: In this case a conductivity term is selected as a 
function of cubic water content and constant  
 

3u
K cm/h

3
=  

 
and D = 1cm2/h. Therefore, Richard equation becomes: 
 

                             2
t x xxu u u u 0+ − =  (17) 

 
with initial condition:  
 

1 xu(x,0) (1 tanh[ ])
2 3

= + −  

 
 Therefore in Eq.(4) a = 1/3, n=3,b=-1 and we 
choose c = 1/3. For application of homotopy analysis 
method, we choose the initial approximation: 
 

             0
1 xu (x,t) u(x,0) (1 tanh[ ])
2 3

= = + −  (18) 

 
and the linear operator: 
 

                       
(x,t,;p)

L[ (x,t;p)
t

∂φ
φ =

∂
 (19) 

 
which possesses the property 

 
                                    1L(c ) 0=  (20) 

 
where c1 is an integral constant to be determined by 
initial condition. Using Eq. (17), we define nonlinear 
operator as  
  

2

2

2

(x,t,;p) (x,t,;p)
N[( (x,t,;p)]

t x
(x,t,;p)(x,t,;p)

x

∂φ ∂ φ
∂φ = −

∂ ∂
∂φ+ φ

∂

 

 
In view of Eq. (15), we obtained 
 

2
m 1 m 1

m 1m

m 1
m 1 n

j
n 0

u (x,t) u (x,t)
R ( u )

t x

u (x,t)
u (x,t)

t

→
− −

−

−
− −

=

∂ ∂
= −

∂ ∂

∂
+

∂∑
 

 
Now using Eq.(13), The HAM would lead to: 
 

2 2

1 3 3
2 2

x x xhtsech ( )tanh( ) htsech ( )
3 3 3u(x , t )

x x18 2(1 tanh( )) 18 2(1 tanh( ))
3 3

= −

− −

 

 

2 2 2 2

2 3
2

2 2 2 2 2

2

3
2

x x x x
h t sech ( )tanh( ) httanh( )sech ( )

3 3 3 3u (x,t)
x x216 (2 2tanh( )) 18 2(1 tanh( ))3 3

x xh t sech ( ) h tsech ( )
3 3

x x
648 (2 2tanh( )) 18 (2 2tanh( ))

3 3
xhtsech ( )
3

x
18 2(1 tanh( ))

3

= +
− −

− −
− −

−

−

 

                                M  
Thus 

n
n 0

u(x,t) u (x,t)
+∞

=

= ∑  

 
 Figure 1 and 2 show the 5th-order approximate 
solution HAM and exact solution, respectively. 
 The behavior of the HAM and the exact solution 
and MADM in two transition points (x =1,5) are plotted 
versus time in Fig. 3 and 4. In [27] this case has been 
solved by MADM using HAM for h =-0.85 
 
Case 2: In this case a conductivity term is selected as a 
function of quadric water content and constant value 
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Fig. 1: The 5th-order approximation 
 

 
 
Fig. 2: Exact solution of burger (2/1) 
 

4u
K cm/h

4
=  

 
and D = 1cm2/h  Eq.(1). Consequently, Richards 
equation is converted to: 
 

                             3
t x xxu u u u 0+ − =  (21) 

 
with initial condition:  
 

3 1 3u(x,0) (1 tanh[ x]
2 8

= + −  

 
 Therefore, in Eq.(4) a = ¼, n = 4, b =-1 and we 
choose c = 1/4. We choose the linear operator: 
 

                          
(x,t,;p)

L[ (x,t;p)
t

∂φ
φ =

∂
 (22) 

 
which possesses the property: 
 
                                    1L(c ) 0=  (23) 

 

 
 
Fig. 3: Comparison of exact solution 
 

 
 
Fig. 4: Comparison of exact solution and 5th-order of 

HAM and MADM and 5th-order of HAM and 
MADM 

 
We choose  
 

3
0

1 3u (x,t) u(x,0) (1 tanh[ x]
2 8

= = + −  

 
From Eq. (21) the nonlinear operator is defined as 
 

2

2

3

(x,t,;p) (x,t,;p)
N[( (x,t,;p)]

t x
(x,t,;p)(x,t,;p)

x

∂φ ∂ φ
φ = −

∂ ∂
∂φ+ φ

∂

 

 
Then by application Eq. (15), we have: 
 

2
m 1 m 1

m 1m

jm 1 n
m 1 n

j k k
n 0 j 0 k 0

u (x,t) u (x,t)
R ( u )

t x

u (x,t)
u (x,t) u (x,t)

t

→
− −

−

−
− −

−
= = =

∂ ∂
= −

∂ ∂

∂
+

∂∑ ∑ ∑
 

 
 Therefore by using Eq. (13), we obtain terms of 
HAM: 



Studies in Nonlinear Sci., 1 (1): 08-13, 2010 

12 

 

 
 
Fig. 5: Comparison of exact solution 
 

 
 
Fig. 6: Comparison of exact solution and 4th-order of 

HAM and MADM and 4th-order of HAM and 
MADM 

 
2 2

1 5 5
3 33 3

3x 3x 3x
htsech ( )tanh( ) htsech ( )

8 8 8u (x,t)
3x 3x

32 2(1 tanh( )) 32 2(1 tanh( ))
8 8

= −

− −

 

 
2 2 6 2 2 6

2 11 8
3 33 3

2 2 6 2 2 2 4

11 8
3 33 3

3x 3x 3x
5h t sech ( )tanh( ) 15h t sech ( )

8 8 8u (x,t)
3x 3x512 2(1 tanh( )) 2048 2(1 tanh( ))
8 8

3x 3x 3x5h t sech ( ) 35h t tanh ( )sech ( )
8 8 8

3x 3x512 2(1 tanh( )) 2048 2(1 tanh( ))
8 8

= − −

− −

+ + −

− −

…

 

                                           M  
Thus 

n
n 0

u(x,t) u (x,t)
+∞

=

= ∑  

 
 Now, Richards equation is approximated by 
repeating  the  HAM. The behavior the 4thorder of 
HAM and the exact solution MADM in two transition 
points (x = 1;7) are plotted versus time in Fig. 5 and 6. 
By  choosing  h =-1, we will reach ADM solution given 
by [17]. 

 
Remark: In Fig. 3-6, we show the comparisons 
between the 4-term HAM solutions and the exact 
solutions. We observe that the results of the 4-term 
HAM are very close to the exact solutions which 
confirm the validity of the HAM.  
 All the numerical results obtained by the 4-term 
HAM are exactly same as the ADM solutions and HPM 
solutions for special case h =-1, H(t) = 1. So its means 
that the ADM is a special case of HAM. But HAM is 
more general and contains the auxiliary parameter h, 
which provides us with a simple way to adjust and 
control the convergence region of solution series. As 
pointed out by Abbasbandy in [1] one had to choose a 
proper value of h to ensure the convergence of series 
solution for strongly nonlinear problems. 
 So it is more important to show that the HAM 
gives convergent series solution for any larger values of 
t by choosing proper values of h. 
 

CONCLUSION 
 
 In this paper, we have successfully developed 
HAM for solving model Broke-Corey in Richards 
equation for all values of x and various intervals of t. 
 It is apparently seen that HAM is very powerful 
and efficient technique in finding analytical solutions 
for wide classes of nonlinear problems.  
 It is worth pointing out that this method presents a 
rapid convergence for the solutions. HAM provides 
accurate numerical solution for nonlinear 
 problems in comparison with other methods such 
as MADM. They also do not require large computer 
memory and discrimination of the variables t and x. The 
results show the validity and great potential of the 
homotopy analysis method for nonlinear problems in 
science and engineering. 
 Mathematica has been used for computations in 
this paper. 
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