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INTRODUCTION 

 
 In the last decades, many solutions of nonlinear 
physics problems have been proposed using sequences 
and polynomial expansions [1-5]. An attempt to solve a 
nonlinear heat transfer problem has been carried out in 
the context  of the enhancement of the spray pyrolysis 
common setup [6]. A procedure step during this attempt 
yielded the Boubaker polynomials through a proposed 
numerical expansion. An extracted sequence of these 
polynomials led to the definition of the Boubaker 
Polynomials Expansion Scheme (BPES) whose main 
feature consisted, in this particular case, of involving 
the boundary conditions in the main heat equation. 
 In this paper, we present the chronological history 
of the Boubaker Polynomials  Expansion Scheme BPES 
along with some recent original applications. We 
particularly investigate the Boubaker Polynomials 
Expansion Scheme (BPES) analytical features and 
simplifying performance. 
 

HISTORICAL PREVIEW 
 
The early attempt to solve the heat equation: In the 
model of the spray pyrolysis common setup, the heat 
transfer equation was established as equation (1). 
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with: 
Tg : Absolute temperature inside glass medium (in K) 
Ts : Absolute temperature inside deposited layer (in K) 
Dg : Glass medium thermal diffusivity (in m2.s-1) 
Ds : Deposited layer thermal diffusivity (in m2.s-1) 
Pb : Power transmitted from bulk to glass (in Wm-3) 
Ps : Power transmitted from glass to layer (in Wm-3) 
kg : Glass medium thermal conductivity (in W.m-1.K-1) 
ks : Deposited layer thermal conductivity (in W.m-1.K-1) 
 
 Under some physical assumptions (ambient fluid 
weak thermal conductivity, bulk considered as an 
infinite source under constant temperature Tb…), the 
Dirichlet-Newman first order boundary conditions 
were: 
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with: 
 
T8  : Room absolute temperature (in K) 
Tb : Bulk absolute temperature (in K) 
h : Deposited layer width (in m) 
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 For resolution purposes, a general expression (3) 
was proposed for normalized temperature distribution 
inside glass sample: 
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where Jm i s  m-order first kind Bessel function, N is 
prefixed integer parameter, A and ξm are constants to be 
found.  
 By introducing the expression (3) in equation (1) 
and thanks to Bessel functions expansion uniqueness 
the system (4) was obtained. 
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(4) 

 
 Finally, coefficients ξm were calculated for z=0 and 
for the given values of the parameters H, h, kg, ks, Dg 
and Ds. The calculated set of values, when introduced in 
expression (3) gave a t-dependent solution to the heat 
equation. 
 For superior values of N and when z=0; the system 
(4) defined a serial of polynomial function Bm(x) as 
equation (5):  
 

          
0

1

2

m m 1 m 2

B (X) 1
B ( X ) X

B (X) X² 2
B (X) X.B (X) B (X)      for: m 2− −

=
 =


= +
 = − >

 (5) 

 
where  

1 z 0X Q (z) ==  

 
 Later, a monomial definition of these polynomials 
was established by Labiadh et al. [7]: 
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(  denotes the floor function). 
 
 Recently, Luzón et al. [8] and Barry et al. [9] 
established Riordan matrices for the Boubaker 
polynomials:  
 

               (7) 
and 
 

  (8) 
 
 They also demonstrated [8, 9] that the Boubaker 
polynomials were linked to the Fermat polynomials 
Fn(x) by the relation: 
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Boubaker Polynomials Expansion Scheme (BPES): 
Recently, it was noticed some particularities for the 
orders m=4q, (q>0) for the Boubaker polynomials. 
These particularities led to the definition of the 
polynomial sub-set B4q :  
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 The first noticed properties of the 4q-Boubaker 
polynomials were the following: 
 Values at boundaries, in the reduced real domain 
[0; αq]:  
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first derivatives values at boundaries: 
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and: second derivatives values at boundaries: 
 

              

( )

q

N 2
4q 2

2
q 1 x 0

N N2
4q

q2
q 1 q 1x

d B (x) 8
N(N 1)

3dx

d B (x)
G

dx

= =

= ==α


 = −




=



∑

∑ ∑
 (13) 

with: 
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where αq (or αn) designates the 4q-Boubaker 
polynomial minimal positive root. 
 Equations (11-13) were the first bases for the 
establishment of the Boubaker Polynomials Expansion 
Scheme (BPES). 
 Solutions to several applied physics problems  have 
been proposed [10-15] using the (BPES). 

  
The Boubaker Polynomials Expansion Scheme 
(BPES) applications  
A glossary of precedent applications: The Boubaker 
Polynomials  Expansion Scheme BPES has been used 
by several applied physics and engineering studies . 
Agida et al. [10] used this protocol for establishing an 
analytical method for solving Love's integral equation 
in the case of a rational kernel. O. B. Awojoyogbe et al. 
[11] took profit from the similarities between the 
hemodynamic flow system inside some organic tissues 
and the BPES definition system, in order to express the 
tissue response to magnetic fields excitation. Kumar 
[12] combined the Boubaker Polynomials Expansion 
Scheme (BPES) analyses and array analyses for 
determining the normalized field created conjointly by 
two similar circular coaxial conducting disks separated 
by a pre-fixed distance. On an other hand, J. Ghanouchi 
et al. [13] used the BPES to discuss the intriguing 
paradox of establishment of non-Gaussian isothermal 
generative lines beneath a plate surface targeted by a 
Gaussian beam. 
 The works carried out by S. Slama et al. [14, 15] 
proposed  solutions  to  the  heat  transfer  problem 
inside  different  welding  and  annealing  systems. 
These works used the BPES as a guide to solve heat 
discrete  conservation  equations  during  cooling 
phases  and yielded consistent cooling velocities profile. 
T. Ghrib et al. [16] used the BPES in order to establish 
a first order correlation between the Vickers 
microhardness and the thermal diffusivity of treated 
steel alloys. 
 In the last years, S. Lazzez et al. [17, 18] and D.H. 
Zhang  et  al.  [19]   investigated   semiconductor  
micro  layers  physical  properties  using the BPES. 
More recently, A. Yildirim et al. [20] proposed 
analytical   solutions   to  the  Klein-Gordon  equation 
in a pulsed stationary regime using Modified 
Variational Iteration Method (MVIM) and BPES. 
Geng’s standard second-order Boundary Value Problem 
(BVP) was also investigated by D.H. Zang et al. [21] 
using the BPES.  
 In a different filed like animal biology and medical 
sciences, Dubey et al. [22] proposed, in a study 
commented and corrected by Milgram [23], an 
analytical method for the identification of predator-prey 
populations time-dependent evolution in a Lotka-
Volterra predator-prey model which took into account 
the concept of accelerated-predator-satiety, O. B. 
Awojoyogbe et al. [24] proposed also a mathematical 
formulation for the NMR diffusion equation derived 
from the Bloch NMR flow in lower heart coronary 
artery. This formulation was totally based on the 
properties of the Boubaker polynomials expansion 
scheme BPES. 
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Application to the steady-state stagnation point flow 
problem: The steady-state boundary-layer flow of a 
micro-polar fluid near the forward stagnation point of 
an infinite flat plane [25] is governed by the system: 
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where H is the vortex-to-absolute viscosities ratio. The 
dimensionless functions ƒ (η) and g (η) are expressed 
versus stream function ψ (x,y) and the gyration 
component N(x,y): 
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where a is a constant, υ is the kinematic viscosity in the 
case of concentrated particle flows in which the 
microelements close to the wall surface are unable to 
rotate and (x, y) are the cartesian coordinates with x-
axis being along the wall and the y-axis normal to it.  
 Classical analytical resolution protocols are based, 
i. e., on affecting exponentially decaying forms to the 
functions ƒ (η) and g (η): 
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where n and λ are arbitrary constants and (Aij, Bij) are 
couples of unknown indexed coefficients. 
 Initial guesses are generally applied to the 
expressions of ƒ (η) and g (η) parallel to the 
establishment of appropriated operators: 
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 The BPEs resolution protocol is fundamentally 
different since its proposed expansions (18) verify the 
boundary conditions intrinsically, inherently and 
besides all prior to resolution process: 
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where B4k are the 4k-order Boubaker polynomials, rk 
are B4k minimal positive roots, N0 is a prefixed integer 

and 
0

k k k 1..N
,

=
λ λ%  are unknown pondering real 

coefficients. 
 Application of the BPES needs no additional 
operator. Its following step consists simply of 
transforming the main system (14) into a nonlinear 
problem based on minimizing Minimum Square 
Functions 
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where Γ and Γ% are nonlinear function deduced from 
system (14). 
 The  correspondent  solutions  are  represented in 
Fig. 1 along with the exact solutions given by H. Xu 
[25].  
 

 
 
Fig. 1: Proposed solution to the steady-state stagnation 

point flow problem  
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Application to the problem of flat plate impulsive 
motion: This problem concerns second-order fluids 
[26] unidirectional flow at the vicinity of a moving flat 
plate. If the plate is situated at a given spacial position 
(wall: y = 0) and by denoting ϖ  the velocity 
component along the wall, the governing equation is: 
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where k is kinematic viscosity [27, 28] and l is of the 
fluid stress-to-density ratio [27]. It is noted that the case 
l = 0 is simply referring to a Newtonian flow [26]. 
 The solution is subjected to the standard physically 
imposed boundary conditions: 
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where F is a given function which traduces plate 
intrinsic motion.  
 The solution process is applied to the particular 
case of opposite velocity-acceleration trends motion, 
traduced by: 
 

                                 tF(t) A Be−β≡ −  (22) 
 
where A, B and β are positive real constants . 
 In this case, a classical analytical resolution 
protocol [26, 27] yielded the approximated solution: 
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 The BPES resolution protocol proposes a solution 
of the kind: 
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where  B4k are  the  4k-order  Boubaker   polynomials, 
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Fig. 2: Proposed solution to the problem of flat plate 

impulsive motion 
 
 This expression verifies the given conditions prior 
to resolution process. Partial plots of the solution are 
presented in Fig. 2, along with those proposed by Van 
Gorder et al. [29] for A=B=β=1. 
 
Application to the problem of a beam free 
longitudinal vibrations inside a non-linear elastic 
medium: The main equation verified by a beam free 
longitudinal vibrations amplitude u inside a given non-
linear elastic medium [30-32] is: 
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Where ρ is the density of beam, E is Young’s modulus, 
q is the velocity of wave propagation and F is the 
restoring force per unit mass acting on the beam from 
the surrounding medium.  
 The targeted solution is subjected to the boundary 
conditions: 
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where f and g are given functions and: 
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where l is the length of the beam. 
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Fig. 3: Proposed solution to the problem of beam free 

longitudinal vibrations inside a non-linear elastic 
medium 

 
 The solution process is applied to the particular 
case of a symmetric nonlinear force: 
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with, as an analytical solution [31] is : 
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 The BPES-related resolution protocol proposes 
also the solution: 
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which verifies the given conditions prior to resolution 
process. 
 Plots of the solution are presented in Fig. 3, along 
with those proposed by L. Cveticanin [30-32]. 
 

CONCLUSION 
 
 The Boubaker polynomials and the BPES have 
been studied. This is of interest not only because of 
their applications in nonlinear applied physics fields, 
but also because the used method can be applied to 
solve problems in chemistry, biology, mechanics and 
medicine. We have presented the features of the related 
Boubaker Polynomials Expansion Scheme (BPES) and 
discussed some of its applications. 
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