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Abstract: Analytical solution is presented for the investigation of uniqueness, heat and mass transfer on
magnetohydrodynamic (MHD) flow over a movable leaky plumb surface. The temperature of the surface and
concentration is not constant. The coupled boundary layer equations are non-linear and they are solved using
Homotopy Analysis Method (HAM). A parametric study of all the governing parameters is carried out over
the results. The results show that the momentum, heat and mass transfer phenomena depend on magnetic
parameter, Prandtl number, Schmidt number, buoyancy ratio and suction or blowing parameter. Numerical and
HAM results for the dimensionless velocity profiles, temperature profiles and the concentration profiles are
presented for several of important parameters. The velocity profile is reduced as the value of the Hartman
number and buoyancy ratio increase. Temperature value is decreased when the magnitude of suction parameter
increases as well as blowing parameter increase. Also the concentration magnitude decreases when Schmidt
number increases.
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INTRODUCTION this method. Homotopy analysis method is one of the

Most fluid mechanical problems have non-linear and nonlinear differential equations. Also both ordinary
behavior inherently. There are few phenomena in different as well as partial can be solved by the HAM which was
fields of science occurring linearly. A lot of scientific expressed by Liao in [1-4]. The applications of this
phenomena like heat and mass transfer ones function method and similar methods in different fields of nonlinear
nonlinearly. These nonlinear equations cannot be solved equations, in fluid mechanics and heat transfer have been
using the ordinary methods and therefore these equations studied by seceral researchers [5-10] and etc.
should be solved using the other methods. Some of them Hydromagnetic incompressible viscous flow has many
are solved using numerical techniques and some are important engineering applications such as MHD power
solved using the analytical and semi analytical methods generator, cooling of reactors and many metallurgical
such as perturbation techniques, ADM, homotopy processes involve the cooling of continuous tiles.
analysis method (HAM) and etc. In this study HAM is Sakiadis [11] firstly studied the boundary layer flow over
applied for finding the approximate solutions of a stretched surface moving with a constant velocity. Liao
momentum, heat and mass transfer in MHD flow with free obtained a proper series solution of unsteady boundary
convection on a movable leaky plumb surface. In the layer flows over an impulsively stretching plate uniformly
analytical perturbation method the small parameter should valid for all non-dimensional times. Cheng and Huang [12]
be exerted in the equation. Therefore, finding the small considered the problem of unsteady flows and heat
parameter and exerting it into the equation is important in transfer in the laminar boundary layer on a linearly

well- known methods used to solve wide range of linear
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accelerating surface with suction or blowing with or properties are assumed to be constant except the density
without a heat source or sink. Ali [13] presented the heat
transfer characteristics of a power law continuous
stretched surface without and with suction injection. The
free convection effect on MHD coupled heat and mass
transfer of a moving vertical surface has been studied by
Yih [14]. Anjali Devi and Kandasamy [15] studied the
steady MHD laminar boundary layer flow over a wall of
the wedge with suction and injection in the presence of
species concentration and by considering the mass
diffusion. The effects of Dufour and Soret numbers on
unsteady MHD free convection and mass transfer flow
past an infinite vertical porous plate embedded in a
porous medium have been considered by Alam et al. [16].
Xu and Liao [17] examined the unsteady MHD flows of a
non-Newtonian fluid over a non-impulsively stretching
flat sheet and presented an accurate series solution.
Abdelkhalek [18] investigated the free convection from a
moving vertical surface in a MHD flow using perturbation
technique. Recently, Hasanpour et al. [19] investigated
the MHD mixed convective flow in a lid-driven cavity
filled with porous medium using numerical method. They
concluded that the fluid circulations within the cavity are
reduced by increasing magnetic field strength as well as
Darcy number reduction. Ashorynejad et al. [20]
investigated the MHD free convective flow through a
porous medium over a square cavity. The results show
that the heat and mass transfer mechanisms and the flow
characteristics inside the enclosure depended strongly on
the strength of the magnetic field and Darcy number. The
main objective of present study is investigation of the
momentum, heat and mass transfer in a MHD flow of a
movable permeable vertical surface. The system of
momentum, heat and mass conservation equations can be
reduced to some parametrical problem by introducing
suitable transformation variable. By use of scaling
transformations, the set of governing equations and the
boundary condition are reduced to Non-linear ordinary
differential equations with appropriate boundary
conditions. Then these transformed governing equations
are solved using homotopy analysis method.
Characteristic results for the velocity, temperature and
concentration profiles are presented for various
governing parameters.

MATERIALS AND METHODS

In   this paper     the    steady,   incompressible,
two-dimensional MHD Flow with free convection on a
movable leaky vertical surface is  considered.  The   fluid

in the buoyancy terms which is approximated according
to the Boussinesq’s approximation. The variations of
surface temperature and concentration are assumed to be
linear. No electric field exists and both viscous and
magnetic dissipations are neglected. The Hall Effect and
the joule heating terms are also neglected when the
velocity of the fluid distant from the plate is equal to zero.
Under the above assumptions the boundary layer form of
the governing equations can be written as: 

(1)

(2)

(3)

(4)

The boundary conditions for Eqs. (1)-(4) are as follows:

(5)
(6)

Also the following non-dimensional functions and
variables are introduced:

(7)

(8)

With a new set of independent and dependent
variable defined by Eq. (7), the continuity equation (1) is
satisfied automatically and from Eqs. (2) and (4) the
following ordinary differential equations can be obtained:

(9)

(10)
(11)

Primes denote differentiation with respect to  and
the boundary conditions (Eqs. (5) and (6)) becomes: 

(12)
(13)
(14)
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In the above equations N is zero for thermal driven Obviously for p = 0 and p = 1 the above equations (27-29)
flow, infinite for mass driven flow, positive for thermally

assisting flow, negative for thermally opposing flow abd 

is the suction or injection parameter. For the case of
suction, > 0 and hence F > 0. and for the case ofw w

blowing,  < 0 and hence  F  < 0. w w

Application of HAM: Homotopy analysis method is used
for the solution of the system equations (9-11) by subject
to the boundary conditions (12-14). To start with HAM
one needs to make the initial guess approximations
satisfying the boundary data and to choose suitable linear
operators. The initial approximations of F( ) and ( ),
C( ) and the auxiliary linear operators L[F( )], L[ ( )] and
L[C( )] are as follows:

(15)
(16)
(17)

and:

(18)
(19)
(20)

Which have the following properties:
(21)
(22)
(23)

Following the Homotopy analysis method, the non-
linear operator is defined as:

(24)

(25)

(26)

Using the above description, with assumption H  ( )1

= 1, H  ( ) = 1, H  ( ) = 1 the zero-order deformation2 3

equation is constructed as:
(27)
(28)
(29)

change to:

(30)

(31)

(32)

As p increases from 0 to 1, and vary

from F ( ) and ( ) to the exact solutions (F( ) and0 0

( )). Due to Taylor’s theorem and Eqs. (30)-(32), the F( )
and ( ) can be written as:

(33)

(34)

(35)

(36)

(37)

(38)

Where the convergence of the series in Eqs. (33) -
(35) is dependent on . Assume that  is selected such
that the series in Eqs. (33) - (35) are convergent at p = 1,
then due to Eqs. (30) - (32) one can write:

(39)

(40)

(41)

Accor ding to initial condition and the rule of
solution    expressions,    it    is    straight   forward  that
the  initial  approximation  should  be in the form:
(Eqs.(42)-(44)).
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(42)

(43)

(44)

Differentiating the zeroth-order deformation
equations m times with respect to p, dividing by m! and
finally setting p = 0 the following mth-order deformation
problems can be defined as:

(45)
(46) Thus the final solution can be written as:
(47) (51)

From above equations the final formulation of each (53)
function can be obtained as: 

(48) ensure that the solution series (Eqs. (48-50)) converge, as

(49) RESULTS AND DISCUSSIONS

(50) Yih [14] and Abdoulkhalek [18]. The result of this

Fig. 1: Physical configuration and coordinate system

Fig. 2:     -curves for 15  -order approximations th

(52)

Convergence of the HAM Solution: It is necessary to
prove  the  convergence  of  the   solution   series  (Eqs.
(48-50)).The convergence and rate of approximation for
the HAM solution of the series are strongly dependent
upon the auxiliary parameter. Therefore, one can choose
the proper values of   by plotting the    -curves which

suggested by Liao [2-4].For this purpose the     -curves
are plotted for 15th-order of approximations in Fig (2).
These figures observably shows that the range for the
acceptable values of     is                     .Obviously the
calculations show (Figs. 2-4) that the series (Eqs. (51)-
(53)) converge in the whole region of g when.

In order to verify the accuracy of our present method,
a comparison of wall velocity gradient F (0) for various
values of Hartmann number (M) with those reported by

comparison is given in Table 1.The comparison in all the
above cases is found to be in admirable harmony between
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Table 1: Comparison of non-dimensional wall velocity gradient F”(0) for
various values of M

M=0 M=0.5  M=1  M=1.5  M=2

Yih [14]  -1 -1.2247   -1.4142  -1.5811  -1.7321
Abdelkhalek [18]  -1 -1.2356   -1.4156  -1.5821  -1.7334
Present work  -1 -1.2316   -1.4150  -1.5819  -1.7331

Fig. 3: Effects of M on tangential velocity profiles Pr =
0.72, Re = 50,  N = 0, Sc = 0.2,GrT= 5 and Fw = 0

Fig. 4 : Effects of Fw on temperature profiles, Pr = 0.72, Re
= 50, N = 0, Sc = 0.2 and GrT = 5.

Fig. 7: Effects of Sc on concentration profiles Pr = 0.72,
Re = 50, N = 0, M=1

the present results and the previous studies. The general
results of the examinations are that the external magnetic
field reduces the velocity value and consequently the
flow rate and also the wall heat transfer. In addition,
considerable influences on the flow and thermal fields can
be seen with temperate magnetic field strengths. This
situation happen only for liquid metal flows while in this
elements the effects of magnetic fields and Joule heating
is little. In order to get the physical insight into the current
problem HAM are carried out for different values of
Hartmann number. Fig. 3 demonstrates the influence of
the Hartmann number on the velocity profiles in the
boundary layer. Application of magnetic field to an
electrically conducting fluid gives climb to a resistive type
force called the Lorentz force. This force has the tendency
to calm down the movement of the fluid in the boundary
layer. Fig. 4 shows the temperature  ( ) profiles across
the boundary layers at different values of the suction or
injection parameter. It is known that the imposition of wall
fluid suction reduces both the hydrodynamic and thermal
boundary layers which specify reduction in the
temperature profiles. However, the opposite behavior is
produced by imposition of wall fluid blowing or injection.
The influence of Schmidt number (Sc) on the
concentration is demonstrated in Fig.5. As Sc number
increases the mass transfer rates increases. Hence, the
concentration decreases with increasing Sc. 

CONCLUSIONS

The main purpose of the present study is
investigation of momentum, free convection heat and
mass transfer of MHD flow over a movable permeable
plumb surface using HAM. Results and tables are
presented to examine the effects of the Hartman number
(M), buoyancy ratio (N), Schmidt number (Sc) and
blowing or suction parameter (F )on the velocity andw

temperature and concentration profiles.

The velocity F´ is detected to reduce as the value of
the Hartman number (M) increase.
The velocity F´ increase when buoyancy ratio (N) is
increased.
When the magnitude of suction parameter (F >0) isw

increased, as well as blowing parameter (F <0), thew

temperature is decreased.
The concentration, decreased when Schmidt number
(Sc) is increased.
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