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A Multistage Homotopy Perturbation Method for Solving Human T-Cell
Lymphotropic Virus IIHTLV-I) Infection of CD4" T-Cells Model
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Abstract: In this article, a multistage homotopy perturbation method is implemented to give approximate and

analytical solutions of nonlinear ordinary differential equation systems such as human T-cell lymphotropic
virus [ (HTLV-T) infection of CD4™ T-cells model. Numerical results are compared to those obtained by the
fourth-order Runge-Kutta method. Some plots and tables are presented to show the reliability and simplicity

of the method.
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INTRODUCTION

Dynamics of human T-cell lymphotropic virus T
(HTLV-I) infection of CD4" T-cells 1s examined [1-6] at the
study. The components of the basic four-component
model are the concentration of healthy CD4™ T-cells at
time £, the concentration of latently infected CD4™ T-cells,
the concentration of actively infected CD4" T-cells and
the concentration of leukemic cells at time ¢ are denoted
respectively by T(#), T,(#), T,(#) and T,{#). These quantities
satisfy.

dr

—=A-u,r—xr,r

P iy A

dT’

—L =T, T —(p,+a)T;
dt

dar

A =al, - (u,+p)Ty
dt

dT

TTZPTA+JBTM(17TM/TMM)7#MTM (1)

With the initial conditions:
T(0)=PL.TH0) =P,.T(0) =P T,{0)=P, (2)

Where T.7,.T, and T,, denote the numbers of umnfected,
latent infected, actively infected CD4" cells, the number of
leukemia cells, respectively. The parameters A, u,, k¥ and
K, are the source of CD4™ T-cells from precursors, the
natural death rate of CD4" T-cells, the rate at which

uninfected cells are contacted by actively infected cells,
the rate of infection of T-cells with virus from actively
infected cells, respectively. u;, #, and u,, are blanket death
terms for latently infected, actively infected and leukemic
cells. Additionaly, @ and p represent the rates at which
latently mfected and actively infected cells become
actively infected and leukemic, respectively. The rate
determines the speed at which the saturation level for
leukemia cells 1s reached. T, is the maximal value that
adult T-cell leukemia can reach. The main purpose of this
paper 15 to extend the application of the multi-step
homotopy perturbation method, a reliable algorithm based
on an adaptation of the standard homotopy perturbation
method [7-16], developed in [17-20] to obtain numerical
solution of Egs. (1) subject to the initial conditions (2).
Throughout this paper, we set g, = 0.66(mm,” / day)
;= 0.06(day), p, = 0.05(day), m,=0.005(day), k=05,
o = 0.004(dw), p = 0.0003(day), p = 0.00004 (day),
T, = 2200(mm”). The paper is crganized as follows: A
brief review of HPM and MsHPM are given in Section 2
and 3, respectively. The application of the proposed
numerical scheme to model (1) is illustrated in Section 4.
The conclusions are then given in the final Section 5.

Homotopy Perturbation Method: To illustrate the
homotopy perturbation method (HPM) for solving non-
linear differential equations, He [7, 8] considered the
following non-linear differential equation:

AQ)y =fr), re Q (3)
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Subject to the boundary condition

B[H,au] =0,reQG
on

Where 4 is a general differential operator, B is a

(“4)

boundary operator, f{#) 18 a known analytic function, I" 1s

the boundary of the domamn Q and @&
n

denotes

differentiation along the normal vector drawn outwards

from €. The operator 4 can generally be divided into two

parts M and N. Therefore, (3) can be rewritten as follows:

M(uw) + N =fr), re Q (5)

He [7, 8] constructed a homotopy v(z,p). € =< [0,1] -R
which satisfies

H(v.p) =1 —p) [M(v) —M(u,)] + plA(v) —fr)] =0 (6)
Which 1s equivalent to
H(v.p) = M(v) = M(u,) + pM(v) + pIN(v) = fir)] =0 (7)

Where p € [0,1] 1s an embedding parameter and u, 1s an
mutial approximmation of (3). Obviously, we have
H(v,0) = M(v) —M(u,) = 0, Hv.1) =A(v) —fr) = 0. (8)
The changing process of p from zero to umty 1s just
that of H(v,p) from M{(v) — M(1,) to A(v) — f#). In topology,
this is called deformation and is called homotopic.
According to the homotopy perturbation method, the
parameter p is used as a small parameter and the solution
of Eq. (6) can be expressed as a series in p in the form.
vEvy v+ pv, + v + (9
When p - 1 Eqg. (6) corresponds to the original one, Eqgs.
(7) and (8) become the approximate solution of Eq. (3), i.e.,

w=limv =vy+v +Vy+ vy +...

p—1 (10)

The convergence of the series in Eq. (10) is discussed
by Hein[7, 8].

Moultistage Homotopy Perturbation Method: For large ¢,
HPM is not good result to approximate solution of some
differential To guarantee validity of
approximation solution for large £, the studies at [17-20],
a new approach called the MSHPM is mentioned.
According to this approach, the solution from [#,, #) to be

equation.
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reproduced by subdividing this interval into [#, #),
[#.5)...[5.4 = 1) and a recursive formula of (11) to be
applied on each subinterval [17-20]:
The mitial approximation 1 each interval is taken from
the solution in the previous interval,
u:,D(t) - ui(t*) - c:* (1 1)
Where ¢" is the left-end point of each subinterval and ¢’
is denoted as the initial approximations for i = 1,2,...,m. By
knowing the first imtial conditions, one would be able to
by appling the inverse linear operator for all unknowns
u (. =12. mn=0]1,..) as follow
t
-1
()= [(ar

.

(12)

In order to carry out the iteration in every subinterval
of equal length Af[t.0.[4.t:),....[6.4
know the values of the following:

= {) we need to

u;i()(r):ui(t*):c;‘,izl,l...,m (13)

This mformation 18 typically not directly attainable,
but through the initial value ¢ =
initial approximations. This is done by taking the previous

t,, we could derive all the

1nitial approximation from the n-th-iterate of the preceding
subinterval given by (13), i.e.

#®
ui,O

(z);ui,n(z‘*j,i:1,2,...,m.5ma,’l*e(zo,tl). (14)
Applications
HPM Solution: In this section, we will apply the
homotopy perturbation method to nonlinear ordinary
differential systems (1).

According to homotopy perturbation method, we
derive a correct functional as follows:

—xp+ p{xg— A+ ppv + Ky ) =0,

3o+ p(¥o— vz +(pp + 0)vy )= 0,

—zp+ plzg—0vy + (Jty + pivy ) =0,

’ v ] v,
V4—V0+P{V0—PV3—JBV4(1—T—4+ Masvy

e (15
The itial approximations are as follows:
vl = x,(H) = TO) = P,
vilf) = ¥y(8) = T, (0) = P,
V() = 2,() = T,(0) = P,
v(D) = r(D) = {0 =P, (16)
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and w0
w= .
7=0
S,
7=0
V3= ZVE;J:PJ:
=0
v, = ZV‘UPJ'
=0 (1 7)

Where v, ij =1,2,3.... are functions yet to be determined. Substituting Eqs.(16) and (17) into Eq. (15) and arranging the
coefficients of “p” powers, we have.

(i~ A+ prP + kAP ) p+ (vi,z + vy + k(P + Py )) 2

+(v;=3 T sty y + K (Pgy + Pyviy + vy )) 2=,

(V'2,1 — KPP, +(j; + a)Pz)p + (v’z,2 - K(Fivm +Fyw, )+ (1 + Cx)vz,l)pz
+(v'2,3 - K(Plvg,2 +Pavy 5 + v1,1v3,1)+ (f; + oc)vzsz)p3 +..=0,

(Vi1 — 0Py + (s pIFy ) pt (Vg — 0w+ (tha + PV ) P

‘ 3
+("3,3 —owy gy + (L, + P)v3,2)p +.=0,

[V&,1PP3+(#MB)P4+T'B

Max

2 ] 2
I JP + [V4,2 — Pyt (#M -B )V4,1 + T)B 2P4V4,1JP
Max

+{V11,3 —2v3 o+ (Hpy — Bz +

2 3
V4,1+2P4V4’2 Jp +...=0.
Max( ) (18)

In order to obtain the unknowns v,, 77 = 1,2,3,... we must construct and solve the following system which includes
nine equations with nine unknowns, considering the initial conditions v, (0) 7 = 1,2.3,...

V- A+ R + P =0,

Vot Hrvyg + k(Pl"s,l + P3V1,1) =0,

V{,3 +Hpyy g+ k(PlVS,Z + P+ V1,1V3,1) =0,
v - kAP + (jip + 0Py = 0,

Vrz,z 'k(PlV3,1 +P3v1,1)+ (Hy+00vy =0,

Vo3 -k (Bys g + Fyvp g+ vy gvsy )+ (g + 00wy =0,
vig— oy + (g + p)y =0,

V'M —ovy g +{fLy + pivyy =0,

V33— Oy g+ (fy+ Pvg 5 =0,

Vo= PP+ (far — PIPs + PP T =0,

Vi 2 — P+ (UM — Bivyy + 2Py B/ T = 0,

V:L3 —pvyy ot (pyr — ,B)v4=2 + ,B/Tmax (Vil + 2P4v4,2): 0. (19
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From Eq. (19), if the 3- terms approximations are sufficient, we will obtain:

= (20)
3
Ty (2)= ;iin1v4(z): D vai(n)
pan)

Hence the 2-term approximate series solutions of HPM are

T=PFR+M-U-Ri-xRA!

+1[(—%(%—,%3—KHP;)—K(A—%H—KP]% ))PE}Z+
2\ KR (P, — (U + PR )

T, =P+ KBE1—(u; +a)Pt

+1(K(k—w ~k, RE )P+ kB (0B, ~ (1 + p)%)}z .
2\ —(p, + o) (kBB - (p, + ) B)

Ty=P +abht—(u,+p)Bt
1
+5(G(KEP3 —(u,+e) ) —(py+ p )l —(p, + p)B))E + .,

TM :Bl+p*p31+18*p41718‘a21/Tmax 7f""'MP41

([ plar, —(uy+ p)B)+ B(pR+ BB~ PR /(T — 1 1)) )
+— 1" 4.

2 72)831/Tmax (pPB + }3P4 7)8-5042/Tmax 7ﬂME1)7nU'M (PPB + )8P4 7}3312/(Tmax 7ﬂMP4)) (21)

MsHPM Solution: According to MsHPM, we choose the imtial approximations as

" " 22
ro(z):]”(z):&. (22)
Carrying out the steps mvolved in MsHPM gives,
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T:Pl*+A(x—t*)—uTH*(t—t*)—Kﬁ*Ps*("’*)

(—,uT (). ~u; B —xP P3*)— K(/l —up B - KP1*P3* ))P}*](t _t*)z
—’CPl* (aP; —(uy + P)P;k )

1, =B kBB (1) =y + o) B (1-1)

oo s ey
A o : (=)
(g +a)(kB'B = (uy + )P,

T, = P3* +aP2*(t—t*)—(,UA + P)P;("’*)
+%(O!(K'P]*P3* =y, +0‘)P2*)—(#A +P)(0‘P2* (g + P)P:))(’_t*)z Foens
T, =P +pP (t—t*)+ P, (t—t*)—ﬁP4*2 (t—t*)/Tmax — P (t—t*)

(pan = Gugr o)) B(on + 85 =827 (1 - i)
A

N | —

N | =

2

(=1 ) + ...
2\ —28p" [T l’*+ﬁl’*—ﬁl’*z/’/' —u, P ) - p o+ pr -pr /. —u, P
4 max p 3 4 4 max uM 4 'uM p 3 4 4 max uM 4

To carry out the iterations in very subinterval of equal length, we take the values of the following,

B =T(") = @p5(1"),
P =T(0)= (PTLs(l*),
P =Ty (’*) = ‘P’/’A3(f*),

B =Ty (1) = p, ().

3 3 3 3
Where o3 (1) = i o1 3(0) = Y 92 00,3(0) = D vs goand gy 5 (1) =D v
pan k=0 k=0 k=0

T T
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Fig. 1: Comparison of 7(¢), T,(£),T(¢).T,(¢) for 3-term MsHPM with df = 0.01 and RK4 with 2= 0.001

507

(23)

(24)



Middle-East J. Sci. Res., 9 (4): 503-309, 2011

Here, based on initial conditions 7(0) 1000 / mnr,
T{0) =250/ mnr’. T,(0) = 1.5 / pm’ for the four-component
model are T,{0) = 0 given solutions obtained from
MsHPM and RK4 in follow:

Figure 1 show the solutions for T(#), T,(¢), T,(£).T,{5)
respectively by the 3-term MsHPM and RK4 on time step
di=0.01.

Table 1: Numerical comparison of T for RK4 with /2 = 0.001 and 3-term
MsHPM with ¢ = 0.01

i RK4 MsHPM [RK4-MsHPM]|
0 1000. 1000 0.

2 8.682267410 8.682266400 0.1011 e-5
4 0.956397209 0.956397150 0.5920 e-7
6 0.713837906 0.713837897 0.9400 e-8
8 0.598531209 0.598531200 0.8600 e-8
10 0.533915509 0.533915504 0.4800 e-8
12 0.495080674 0.495080669 0.5100 e-8
14 0.471374381 0.471374379 0.1800 e-8
16 0.457466762 0.457466755 0.6500 e-8
18 0.450396379 0.450396373 0.5700 e-8
20 0.448388749 0.448388739 0.1020 e-8

Table 2: Numerical comparison of T} for RK4 with 4 = 0.001 and 3-term
MsHPM with g = 0.01

i RK4 MsHPM [RK4-MsHPM]|
0 250. 250. 0.

2 803.3744157 803.3744124 0.33000 e-3
4 722.5191776 7225191826 0.49000 e-5
6 646.1901762 646.1901799 0.37000 e-3
8 579.1198287 579.1198306 0.19000 e-3
10 520.1674099 520.1674121 0.21000 e-5
12 468.3360672 4683360667 0.50000 e-6
14 422.7557620 4227557618 0.20000 e-6
16 382.6653946 382.6653977 0.31000 e-5
18 347.3980294 347.3980334 0.39000 e-3
20 316.3685950 316.3685940 0.11000 e-3

Table 3: Numerical comparison of T for RK4 with 4= 0.001 and 3-term
MsHPM with &t = 0.01

i RK4 MsHPM [RK4-MsHPM]|
0 1.5 1.5 0.

2 6.416966379 6.416966388 0.8000 e-8
4 11.61881117 11.61881122 0.4000 e-7
6 15.71097903 15.71097905 0.1000 e-7
8 18.86895765 18.86895790 0.2400 e-6
10 21.24769074 21.24769100 0.2600 e-6
12 22.97924481 22.97924504 0.2200 e-6
14 24.17602333 2417602348 0.1400 e-6
16 24.93353355 24.93353392 0.3600 e-6
18 25.33276597 25.33276630 0.3200 e-6
20 25.44224472 25.44224528 0.5500 e-6
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Table 4: Numerical comparison of Ty for REK4 with 4 = 0.001 and 3-term
MsHPM with dt = 0.01

¢ RK4 MsHPM IR 4-MsHPM|
0 0. 0. 0.

2 0.0002011773 0.0002011773 0.2011 e-15
4 00010147120 00010147120 0.1014 e-13
6 00021003003 0.0021003093 0.2100 e-13
8 00034632272 00034632272 0.3463 e-12
10 00050328279 0.0050328279 0.5032 e-13
12 00067505360 00067505369 0.6750 e-12
14 0.0085680395 0.0085680306 0.8568 e-12
16 0.0104457326 00104457327 0.1044 e-11
18 0.0123513950 0.0123513951 01235 e-11
20 0.0142500450 0.0142500457 0.1425 e-10

Tables 1-4 exhibits a numerical comparison of the
results obtained with RK4 and with the MsHPM. It 15 to
be noted that the results obtained the MsHPM agree very
vell with RK4 solutions.

CONCLUSIONS

In this paper, multistage homotopy perturbation
method was used for finding the solutions of nonlinear
ordinary differential equation systems such as human T-
cell lymphotropic virus [ (HTLV-I) infection of CD4" T-
cells model. We demonstrated the accuracy and efficiency
of these methods by solving some ordinary differential
equation systems. Comparison between the multistage
Homotopy perturbation solution and classical Runge-
Kutta solution was discussed and plotted. Higher
accuracy solution was obtained via this algorithm.
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