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Abstract: In this study, The preparation and production of multilamellar liposome from Soya lecithin with 75%
phosphatidylcholine were carried out and the behavior of liposome in dye-bath at different temperature, time,
Sodium Sulphate, pH and concentration (five factors) were considered and compared by two different
optimization approaches, namely, parametric and nonparametric using Box-Behnken standard design matrix of
Response Surface Methodology (RSM) in both cases to produce representative data. The comparative results
show that when parametric model is not a good fit for data, nonparametric approach can be considered as one
of the proper alternatives.
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INTRODUCTION contamination load of the dye-baths [8]. Use of liposome

Low temperature of wool dyeing has benefits such as structure of lipids from the cell membrane complex (CMC)
lower energy conservation and wool fibers protection by of wool that is similar to the liposome and the action of
either decreasing the temperature or shortening the this morphological fraction of the fiber in wool
processing time at high temperature during dyeing. The processing. A wool fiber includes of cuticle and cortical
wool fabric dye at low temperature has  both  more cells held together by the CMC and forms the continuous
natural feeling and improved durability, using some of the phase in the keratin [9]. This phase contains a small
known synthetic auxiliaries in dye-bath during low- amount of lipid material. Diffusion properties of wool
temperature dyeing [1]. Liposomes are spherical synthetic fibers are influenced by the lipid structure of the
layers of phospholipids, which has been formed like intercellular spaces that could act as ‘‘solvents’’ for
closed vesicles with an aqueous core and ranging from 10 hydrophobic chemical. The dyes diffuse with ease into
nm to 10 lm in diameter [2, 3]. Liposome composes of lipid swollen regions such as the CMC (intercellular diffusion)
vesicle bilayers enclosing a volume. These structures rather than through the cuticle cells (transcellular
have hydrophobic and hydrophilic parts. The hydrophilic diffusion) [10]. Last few years, several articles have
part is composed of phosphate and choline groups and related the potential application of liposome in wool
the hydrophobic part is made up of hydrocarbon chain dyeing. Meza et al. have investigated liposome as doer in
[4]. Phosphatidylcholine is the most widely used in wool dyeing with acid [11, 12], disperse [13, 14] and metal
biological lipid for producing liposome. Wool dyeing and complex dyes [15]. Also they have worked on the effects
wool blends with liposome have demonstrated to improve of commercially available liposome as a simple additive
quality, energy conservation and lower environmental [16]. Recently they used an optimized mixture of
impacts. Recently, commercial liposome were incorporated commercial liposome and cationic surfactant to improve
into textile auxiliaries, mainly for wool dyeing [5-7]. This is leveling property [17]. In the previous article, the
a clean technology that has already been adapted by influence of temperature on stability of multilamellar
some textile industries. These are additional benefits for liposome (MLV) in wool dyeing was studied and it was
material-weight yield during subsequent spinning. These found that the presence of 1% o.w.f. (on weight of fabric)
improved smoothness and mechanical properties of the of liposome at 858C could improve the dye exhaustion of
dyed textiles and showed a clear reduction in the

as an auxiliary in wool dyeing can be related to the bilayer

Irgalan Blue FBL on wool fabric. It has also reported that
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the wash fastness properties of dyed samples with fabric surface on the glass by a small syringe. The time of
liposome have also improved. There is no report on using complete absorption of the water droplets on the fabric
liposome in wool dyeing with natural dyes. Therefore, we surface was recorded and the mean value of 20 replicates
try to prepare and produce MLV from Soya lecithin with was reported. Dyeing The mordanted wool samples were
75% phosphatidylcholine and study the influence of steeped in the  dye  bath  with  liquor-to-goods  ratio  of
liposome in dye-bath at different temperature, time, 40: 1 that was prepared by 2% o.w.f. of extracted dye at
Sodium Sulphate, pH and concentration during wool pH 2-4 (acetic acid) with different concentrations of
dyeing with madder as a most famous natural dye. The freshly prepared MLV liposome (0, 1, 2, 3% o.w.f.). Dyeing
dyeing temperature and time were  optimized with was started at room temperature and then raised 28C/min
optimum concentration of liposome  and the morphology to the final desired temperature including 75, 85 and 958C.
of the liposome dyed samples has been investigated by The dyeing was carried out with liposome and without
scanning electron microscope (SEM). liposome in various times of 30, 45 and 60 min. The

The preparation and production of multilamellar samples were rinsed with tap water and dried at room
liposome from Soya lecithin with 75% temperature. The amount of reflectance was selected at
phosphatidylcholine were carried out and the behavior of the maximum wavelength and the K/S value which is of
liposome in dye-bath at different temperature, time, the type “the larger the better” was calculated according
Sodium Sulphate, pH and concentration were considered to the Kubelka-Munk equation:
[18] and compared by two different optimization
approaches, namely, with and without Robust Parameter K/S = (1-R) /2R
Design [19]. Since it is impractical and unnecessary to
produce all data points of the different combinations of Methods
levels of four considered factors, a standard design matrix, Parametric Approach: Given the data from a crossed
namely, Central Composite Design (CCD) of Response array, there are a number of potential approaches to
Surface Methodology (RSM) was used in both cases to directly modeling the mean and variance as a function of
produce representative data. This design of experiment, the control factors. A general approach is to assume that
not only produces effective data, but also provides us an the underlying functional forms for the mean and
opportunity of modeling the whole experimental space. variance models can be expressed parametrically.

MATERIALS AND METHODS location (i = 1, 2, …, d), the point estimators of the process

The wool fabric with plain woven structure from 48/2 data for the dual response system. Since the purpose of
Nm yarns was supplied by Iran Merino. The fabric was this article is to demonstrate the utility of a hybrid
scoured with 1% anionic detergent VEROLAN-NBO approach (combining a parametric and nonparametric
(supplied by Rodulf) at 708C for 45 min and then washed approach to modeling) for robust design, we will consider
with tap water and dried at room temperature. Industrial an “off the shelf” model for the mean. An “off the shelf”
grade of aluminium sulphate was used for mordanting of model for the process mean is linear in the model
wool samples. Soya lecithin (containing 75% parameters and can be written as:
phosphatidylcholine) with phase transition temperature
(Tc) of 2188C was gifted by Lipoid (Germany). Madder (1)
was prepared from Yazd providence of Iran. The
reflectance spectra of the dyed samples were recorded on Where  and  are 1×k and 1×l vectors of means model and
an ACS Spectra Sensor II integrated with an IBM-PC. The variance model regressors, respectively, expanded to
wash-fastness of the liposome treated madder-dyed fabric model form,  and  are k×1 and m×1 vectors of mean and
were measured according to ISO 150-C01. For light- variance model parameters, respectively, g is the
fastness measurements, the samples were exposed to the underlying variance function and  denotes the random
daylight for 7 days according to the daylight ISO 105-B01 error  for  the  mean function. The  are assumed to be
and  changes in  the  color  (fading)  were  assessed by uncorrelated with mean zero and variance of one. Note
the blue scale. Also the dry and wet rub fastness of the that the model terms for the i  observation in the means
samples evaluated according to ISO 105-X12. The sample model are denoted by X ' while the model terms for the
pictures were taken with Philips XL30 SEM with 34000. variance model are denoted by . This allows for the fact
The drop absorbency of the fabric samples was also that the process mean and variance may not depend on
measured by dropping of water droplet from 1 cm on the the same set of regressors.

2

Assuming a d point design with n  replicates at eachi

mean and variance,   and , respectively, form the
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Similar to the modeling of the mean, various modeling Once estimates of the mean and variance have been
strategies have been utilized for estimating the underlying calculated, the goal becomes finding the operating
variance function. Bartlett and Kendall [20] demonstrated conditions for the control factors such that the mean is as
that if the errors are normal about the mean model and if close as possible to the target while maintaining minimum
the design points are replicated, the variance can be process variance.
modeled via a log-linear model with the d sample Any control factor which influences the expression
variances utilized for the responses. A great deal of work in (4) is known as a dispersion factor. Any control factor
has also been done using generalized linear models for that does not influence the expression in (4) but does
estimating the variance function. Although not an in?uence the expression in (3) is known as an adjustment
exhaustive list, the reader is referred to Box and Meyer factor. When both dispersion and adjustment factors are
[21], Aitkin [22], Grego [23] and Myers et al. [24, 25]. As present, the robust design problem can be approached in
mentioned previously, since the purpose of this a two-step fashion. Specifically, levels of the dispersion
manuscript is to demonstrate the utility of a hybrid factors are chosen so as to minimize the estimated process
approach to modeling, we choose an “off the shelf” variance in (4) and then the levels of the adjustment
approach to variance modeling. The log-linear model factors are chosen so as to bring the estimated process
proposed by Bartlett and Kendall [20] is a popular one mean in (3) to a desired level. If only dispersion factors are
[see Vining and Myers [26] and Myers and Montgomery present and these factors also influence the process
[24] and is written explicitly as: mean, the researcher is left with finding the levels of the

(2) variance and a deviation from the targeted mean. This is

Where  denotes the model error term whose expectation function such as the squared error loss (SEL):i

is assumed to be zero and whose variance is assumed
constant across the d design points. (5)

Assuming the model forms for the mean and variance
given in (1) and (2), the model parameters are estimated Where T denotes the target value for the process mean.
using the following estimated weighted least squares Minimization can be accomplished via non-linear
(EWLS) algorithm: programming using a method such as the generalized

Step 1: Fit the variance model, , via ordinary The SEL approach is also useful when adjustment factors
least squares (OLS), obtaining are present but are not strong enough to bring the mean
where y  is the d × 1 vector of log transformed sample to the targeted value. Note that the determined set of*

variances. optimal operating conditions is highly dependent on

Step 2: Use  as the estimated variances functions. Misspecification of the forms of either the
to compute the d × d estimated variance-covariance matrix mean or variance models can have serious implications in
for the means model, . process optimization [20, 21].

Step 3: Use  as the estimated weight matrix to fit the Nonparametric Approach: Situations may arise in which
means model, yielding  where the user cannot explicitly state parametric forms for the
denotes the d × 1 vector of sample averages. dual  model. In these situations, parametric specifications

The algorithm above yields the following estimates of may result in serious bias of the estimated mean and/or
the process mean and variance functions: variance. To prevent the bias induced by parametric
Estimated process mean: model misspecification, VB and Anderson-Cook and

(3) use of nonparametric regression for estimating the

Estimated process variance: where the mean and variance functions (h and g ,

(4) forms we have:

control factors that yield a desirable trade-off between low

often accomplished via minimization of an objective

reduce gradient or the Nelder-Mead simplex algorithm.

quality estimation of both the mean and variance

Prewitt (2005) (henceforth referred to as AP) suggest the

process mean and variance. Expressing the dual model
*

respectively) are assumed to have unknown but smooth
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for the variance since the regressors effecting the mean

Similar to parametric regression, estimators are linear
combinations of the response values  and ;
however, the weighting schemes in some nonparametric
regression methods assign more weight to observations
closest to the point of prediction, x . The nonparametric0

fits are more flexible than the parametric fits as they are
not confined to the user’s specified form. This enables the
nonparametric approach to more adequately fit processes
whose underlying models have more complicated forms
than those expressed by the linear models in (1) and (2).

Several fitting techniques have been proposed in the
nonparametric regression literature such as kernel
regression [see for example Nadaraya (1964)[27], Watson
(1964)[28], Priestley and Chao (1972)[29], Gasser and
Müller (1984)[30], local polynomial models [see for
example Fan and Gijbels (1996)[31]], spline-based
smoothers and series-based smoothers [see for example
Ruppert et al. (2003)[32]]. VB first applied nonparametric
smoothing in the RPD setting by using the Gasser-Müller
estimator for the dual response problem. AP continued
with this idea by using the Nadaraya-Watson estimator
and local polynomial regression (LPR), the method used
in this research. LPR is a popular class of nonparametric
smoothing methods and is particularly appealing in
response surface applications due to its robustness to
biased estimates at the boundary of the design space.
LPR is essentially a weighted least squares (WLS)
problem where the weights are given.

by a kernel function. The polynomial form of the local
polynomial fit can be of order one or greater and we focus
on degree p = 1 (local linear regression (LLR)) in this
article.

For the multiple regressor case, at point x =0

(x ,x ,...,x ) where prediction is desired, we de?ne the01 02 0k

kernel function as:

(6)

Where  is a univariate kernel

function and b is the bandwidth. Note that when
estimating both the mean and variance nonparametrically,
a different kernel function may be used for the mean than

do not necessarily effect the variance. The choice of
kernel function is not crucial to the performance of the
estimator (Simonoff, 1996 [33]). Thus, for convenience, we
will use the simplified Gaussian kernel, .

The smoothness of the estimated function is
controlled by the bandwidth, b. Since the coding of
variables in response surface designs typically involves
centering and scaling, the units are comparable in all
directions. Thus, it is reasonable to use the same
bandwidth, b, in all dimensions as expressed in (6). The
choice of bandwidth is critical and the literature is rich
with bandwidth selection methods [see for example Härdle
(1990)[34], Härdle et al. (2004)[35]]. Typically the
bandwidth is chosen to minimize some optimality criteria
such as MSE. Mays et al. (2001)[36] [henceforth referred
to as MBS] introduce a penalized cross-validation
technique, RESSS , for choosing an appropriate**

bandwidth. The approach chooses the bandwidth as the
value b that minimizes RESSS , defined as:**

Where SSE  is the largest error sum of squares over allmax

possible bandwidth values, SSE  is the error sum ofb

squares associated with a particular bandwidth value b, k
is the number of regressors and the prediction error sum
of squares, PRESS, is given by:

Where  denotes the estimated response obtained by
leaving out the i  observation when estimating at locationth

x . The LLR smoother matrix, H  is defined as:i
(LLR)

Where h ' defined below. MBS show that PRESSi
**

performs well by guarding against very small and very
large bandwidths.
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The nonparametric estimate of the dual model is the AMOEBA algorithm (Vetterling et al., 1992[39]) which
found by first estimating the underlying variance function
and then, using the estimated variances as weights, an
estimated weighted local linear regression (EWLLR) fit is
found for the mean. For more information regarding
weighted LLR, the reader is referred to Lin and Carroll
(2000)[37]. Expressions for the fits are provided below:

(7)

(8)

Regarding notation for the means fit,
,    where

 is the diagonal matrix containing the square

roots of the kernel weights associated with x ,0

 w i t h

and  is the estimated variance-

covariance matrix, . Regarding notation

for the variance fit,  and W *0

is the diagonal matrix containing the kernel weights
associated with x . Under the assumption of normality of 0

and y*, the estimates of E[y ] and Var[y ] given by (7)0 0

and (8) are the local maximum likelihood estimates of Fan
et al. (1995)[38].

Similar to the parametric approach to robust design,
once estimates of the mean and variance functions have
been calculated, a SEL approach will be used for process
optimization. Unfortunately, most of the analytic
optimization methods suggested for the parametric
approach are based on gradient techniques which require
continuous functions with derivatives for the estimated
mean and variance functions. Since the mean and variance
estimates from nonparametric methods do not result in
closed form expressions, these optimization routines are
no  longer applicable. VB utilize a simplex search based on

does not require the calculation of derivatives; however,
simplex methods tend to be time consuming and often find
local, as opposed to global optima [for details, see Haupt
and Haupt (2004)[40]]. Therefore, we advocate the use of
genetic algorithms (GAs) for optimization.

The GA, originally developed by Holland (1975)[41],
has become a popular optimization technique. It is
especially useful for optimizing functions that do not have
known parametric forms, as it does not require derivatives
to find the optimal solutions. Instead, the GA is based on
the principles of genetics and uses evolutionary concepts
such as selection, crossover and mutation to find the
optimal solutions. Furthermore, GA uses an intelligent,
sequential search strategy which enables the user to find
global, not local, solutions more efficiently (Goldberg,
1989[42]). Thus, we will usethe GA for process
optimization.

Parametric Vs. Nonparametric: Parametric and
nonparametric approaches to modeling each possess
positive and negative attributes. The parametric method
is superior if the true, underlying functions can be
adequately expressed parametrically and if the user
correctly specifies the parametric forms. However, if either
of the models is misspecified, the estimates may be highly
biased and optimal control factor settings may be
miscalculated. On the other hand, if the user has no idea
about the true form of the underlying functions,
nonparametric methods offer a nice alternative.
Nonparametric methods can provide superior fits by
capturing structure in the data that a misspecified
parametric model cannot. However, nonparametric
methods were originally developed for situations with
large sample sizes whereas a main underpinning of RSM
is the use of cost-efficient experimental designs (i.e., small
sample sizes). In small sample settings, nonparametric
fitting techniques may fit irregularities in the data too
closely thereby creating estimated mean and variance
functions that are highly variable. Consequently,
optimization may be based on non-reproducible
idiosyncrasies  in  the data. MBS introduce methods
which are essentially hybrids of the parametric and
nonparametric methods. These semi-parametric
approaches produce estimated functions which are
characterized  by  lower  bias  than   parametric
approaches and lower variance than nonparametric
approaches.  The  details of this hybrid approach appear
in the next section.
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Table 1: Statistical summary of variables and Observed Data

Table 2: Design Matrix of the Experiment Table 3: Design Matrix of the Experiment (continued Table 2)

Experimental  Design:  The   Box-Behnken   Design  used
for experimental plan with five variables (liposome
amount, temperature, time, Sodium Sulphate  and pH)
along  with  their  ranges   and   K/S   amount  measured
(two  repeated  measures  and  their  average)  for  each
test of design matrix are shown in Table 1 and 2,
respectively.

The ANOVA table (Table 4) calculated from the
obtained data shows that none of the considered factors
and fitted model are significant.

Also the influence of the variable on the results Y
[color strength (K/S)] is adjusted using the following
second order polynomial function:

Table 4: Analysis of Variance of Data



2
0 i i ij i j i ib b X b X X c X i j= + + + ≥∑ ∑ ∑
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Table 5: Estimates of Regression Coefficients along with their Related Statistics

Table 6: The Summary Statistics of fitted model

Table 7: Optimal Solution for the Model

and the optimal values of the factors were obtained as

In this equation, b0 is an independent term according CONCLUTION
to the mean value of the experimental plan, bi are
regression coefficients that explain the influence of the The analysis results of using parametric model
variables in their linear form, bij are regression coefficients approach in which it uses functional mean along with a
of the interaction terms between variables and ci are the variance model show that the model is insignificant with
coefficients of quadratic form of variables. Equation adjusted R-squared of 0.03 and therefore it is regarded as
regression coefficients bi, bij, ci and the determination improper. Therefore, one of the alternative proper
coefficient R2 are shown in Table 5 and 6. approaches may be nonparametric.

An Adjusted R-Squared of this much low (0.03) is in
concordance with the above results and shows that the REFERENCES
considered model cannot be a proper one. Therefore, a
nonparametric approach may be more useful. For this 1. Montazer, M., M. Validi and T. Toliyat, 2006. J.
reason, the nonparametric approach was applied to data Liposome Res., 16: 81.

follows.
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