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Abstract: Let ϑ be a variety of groups defined by the set of laws V. We define the lower ϑ-verbal series, 
upper ϑ-marginal series and lower ϑ-marginal series of group G. A group G said to be ϑ-nilpotent group if 

there exists a series 0 1 n1 G G G G= ≤ ≤ ≤ =  where Gi G, *i

i 1 i 1

G G
V

G G− −

 
≤   

 
. In this note, we show if G be a 

ϑ-nilpotent   group,  then   VP(G)   is   also ϑ-nilpotent   and  we  also  prove  exact  sequence  about
Bear-invariant of G.
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INTRODUCTION

Let V be a nonempty subset of a free group F = 〈x1,
x2,…〉 and ϑ be a variety of groups defined by set of 
laws V [4]. If G is a group with a normal subgroup N, 
then we define the Verbal subgroup, V(G) and the
marginal subgroup, V*(G) and [NV*G] in the following: 

1 n iV(G) { v ( g , ,g ) ; v V,g G , 1 i n}= ∈ ∈ ≤ ≤
*

1 i n 1 i n

i

V (G) {a G ; v ( g , , g a , ,g ) v ( g , , g , ,g );
v V , g G , 1 i n}
= ∈ =

∈ ∈ ≤ ≤

   

1
* 1 i n 1 i n

i

v ( g , ,ga, ,g )v ( g , , g , , g ) ;
[NV G]

v V , g G , a N , 1 i n

−  =  
∈ ∈ ∈ ≤ ≤  

   

It  is  easily  checked  the  verbal  subgroup  is
fully invariant  and  the  marginal  subgroup  is
characteristic in G.

In the special case, where ϑ is the variety of groups 
defined by the set of laws V = {[x1, x2]}.

Then clearly ϑ is the variety of abelian groups and 
the verbal and the marginal subgroups of G are
V(G) G'= , *V (G) Z(G)= , respectively, if N G, then 

*[NVG] [N,G].=

If 1 c 1V {[x , , x ]}+=  is the nilpotent word, then ϑ is 
the variety of nilpotent groups of class at most c and 

*
cc 1

V(G) (G) ,V(G) Z(G)
+

= =γ and *
c[NVG] [N,G].=

The following lemma gives the properties of verbal 
and marginal subgroups of a given group, with respect 
to a given variety of groups ϑ [1].

Lemma 1.1: Let ϑ be a variety of groups and N be a 
normal subgroup of a given group G. Then the
following statements hold : 

(i) V(V*(G)) = 1 and * G G
V .

V(G) V(G)
 

= 
 

(ii) V(G) = 1 iff V*(G) = G iff G∈ϑ.
(iii) [NV*G] = 1 iff N≤V*(G).

(iv) G V(G)NV
N N

 =  
and

*
*V (G)N GV .

N N
 ≤   

(v) *V(N) [NVG] N V(G)≤ ≤  inpatticular,
*V(G) [GVG].=

(vi) if N V(G) 1=  then N≤V*(G) and
*

* G V (G)V .
N N

 =  
(vii) if *[G,N] V (G)≤  then *[V(G),V (G)] 1.=

(viii) *V(G) V (G) , is contained in the Frattini
subgroup of G.

Let ϑ be a variety of groups. we define the lower 
ϑ-verbal series of G to be 

0 1 nG V (G) V ( G ) V (G) ,= ≥ ≥ ≥ ≥ 

Where, for n≥1, n n 1V (G) V(V (G)).−=

It is easy seen that 
n 1

n
V (G) .
V (G)

−

∈ ϑ

The upper ϑ-marginal series of G to be 
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* * *
0 1 n1 V (G) V ( G ) V (G) ,= ≤ ≤ ≤ ≤ 

Where, for 
*

*n
* *
n 1 n 1

V ( G ) G
n 1, V

V (G) V (G)− −

 
≥ =  

 
.

The corresponding lower ϑ-marginal series of G

0 1 nG V (G) V(G) V (G) ,= ≥ ≥ ≥ ≥ 

Where, for n≥1, *
n n 1V ( G ) [V (G)VG].−=

In the special case, where ϑ is the variety of
abelian group, then n (n)V (G) G= is  the derived series
and *

n nV (G) Z (G)=  is the upper central series  and 

n n 1V(G ) (G)+= γ  is the lower central series of G.

Lemma 1.2. Let ϑ be a variety of groups and G be a 
group. Then the following properties hold :

(i) i j i jV (V(G)) V (G), i , j 0+= ∀ ≥

(ii)
*
i j*

i * *
j i

V (G)G
V , i , j 0

V (G) V (G)
+ 

= ∀ ≥   

(iii) *i 1

i i

V (G) G
V , i 1

V(G) V(G)
−  

≤ ∀ ≥ 
 

(iv)
i 1 i 1

*
i i

V (G) V (G)
V , i 1

V (G) V (G)

− − 
= ∀ ≥ 

 

(v)
i

i
j j

G V (G)
V , 0 i j

V (G) V (G)
 

= ∀ ≤ ≤ 
 

Proof: (i), (ii), (iii) and (iv) are clear from the definition 
and using induction. (v) By induction.

i 1
i i 1

i j j

i 1 i

j j

G G V (G)
V V(V ) V

V ( G ) V (G) V (G)

V(V (G)) V (G)
V ( G) V (G)

−
−

−

    
= =     

     

= =

.

H/K is said to be a ϑ-marginal factor of G if H and K 

are normal in G and *H GV
K K

 ≤   
.

Let 1 N E G 1 (*)
µ ε

→ → → →  be an exact sequence of 
groups. Then we say that (*) is an extension of G by N.

A group G is said to be ϑ-nilpotent if there exists a 
series

0 1 nG G G G 1 (*)= ≥ ≥ ≥ =

where  Gi G  and i 1

i

G
G

− is  a ϑ-marginal factor of G 

for i = 1,…,n. The Length of the shortest series (*) is 
the ϑ-nilpotent class of G. 

The class of ϑ-nilpotent group is closed under the 
formation of subgroups, images and finite direct
product. A group G is ϑ-nilpotent of class n, iff

*
nV (G) G=  or n 1V (G) 1+ =  (see [1]).

Let I→R→F→G→1 be a free presentation of the 
group G. Then the Bear-invariant of G, with respect to 
the variety ϑ, defined by VM(G), is defined to be

*

R V(F)
[RVF]
 . we also denote the factor group *

V(F)
[RVF]

 by 

VP(G). of course, if G is in ϑ, then VM(G) = VP(G).
Inparticular, if successively ϑ is the variety of abelian 
or nilpotent group of class at most n (n>1), then the 

Bear-invariant of G will be 
'R F

[R,F]
 which by I.schure [5] 

is isomorphism to the schure-multiplicator of G, or
n 1

n

R (G)
[R, F]

+γ  (F repeated n times), respectively [3].

It is easy seen that the Bear-invariant of the group 
G with respect to the variety ϑ is always abelian and 
independent of the choice of the abelian and
independent of the choice of the free presentation of G 
[2, 3].

MAIN RESULT

Lemma 2.1: let ϑ be a variety of groups defined by the 
set of laws Vand N, H are normal subgroups of a group 
G, then

*
*HN G [HVG]NV

N N N
 =  

Proof: suppose that ig G,h H , v V∈ ∈ ∈ the proof is easy 
by using relation below 

1
1 i k 1 i k

1
1 i k 1 k

1
1 i k 1 k

*
1

1 i k 1 k

v ( g N , , g N h N , ,g N)v(gN, , g N , , g N )

v(gN, ,ghN, , g N ) v ( g N , , g N )

v ( g , , g h , ,g ) N v ( g , ,g ) N

[HVG]N
v ( g , , g h , ,g ) v ( g , ,g ) eN

N

−

−

−

−

=

=

= ∈

   

  
  

  

all the relation are reflective thus by the upper relations 
the proof is competed. 

Theorem 2.2: Let ϑ be a variety of groups  and G be a 
ϑ-nilpotent group of class of c≥2. then 
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(i) c
c

G
VM(G) VM V(G) 1

V(G)
 

→ → → 
 

(ii)

*
c 1

* * *
c 1 c 1

*
c 1

G V (G)
VM(G) V M

V (G) [V (G)VG]
G G

1
V(G) V(G)V (G)

−

− −

−

 
→ → 

 

→ → →

are exact sequence.

Proof: (i) consider the extension 

c
c

G
1 V (G) G 1

V(G)

µ ε

→ → → →

now let 1 R F G 1
π

→ → → → be a free presentation of G. 

Then
c

G
:F

V(G)
ε π → is a free presentation for group 

c

G
V (G)

. put ker επ = S, then 

*
c

G S V(F)
VM( )

V ( G) [SV F]
=


and

*

R V(F)
VM(G)

[RV F]
=



Clearly S is the inverse image of N under π, hence 
R⊆S and 

C
S

V (G)
R

≅

define mapping 

1
c

G
f :VM(G) V M

V(G)
 

→  
 

in natural way, one notes that its image is 

*

*
(R V(F))[SVF]

[SV F]


and the map 

c
2 *

c c

G V(G)
f :VM

V ( G) [V(G)VG]
 

→ 
 

given by * *
cx[SV F] (x)[V(G)VG].π One can easily

check that the image of ƒ1 is

*

*
( R V(F))[SV F]

[SVF]


which is the same as the kernel of ƒ2. Thus we have 
exact sequence as follows 

c
*

c c

G V(G)
VM(G) V M 1

V(G) [V(G)VG]
 

→ → → 
 

Since G is ϑ-nilpotent of class c. So we have 

*
c c 1[V(G)VG] V (G) 1+= =

and the proof is completed.

(ii) Consider the extension 

*
c 1 *

c 1

G
1 V (G) G 1

V (G)

µ ε

−
−

→ → → →

define mapping 

1 *
c 1

G G
f :

V(G) V(G)V (G)−

→

and
*
c 1

2 * *
c 1

V (G) G
f :

[V (G)VG] V(G)
−

−

→

by

*
c 1xV(G) xV(G)V (G)− and * *

C 1x[V (G)VG] xV(G)− 

respectively then the exactness at 

*
c 1

G
V(G)V (G)−

and
*
c 1

* *
c 1

V (G)
[V (G)VG]

−

−

Can be easily checked.

Now, let 1 R F G 1
π

→ → → →  be a free presentation of 

G. Then *
c 1

G
:F

V (G)−

επ → is a free presentation for the 

group *
c 1

G
V (G)−

. Put ker επ = S, then 

* *
c 1

G S V(F)
VM

V [SVF]−

 
= 

 



and

*

R V(F)
VM(G)

[RVF]
=



clearly, S is the inverse image of N under π, hence R⊆S

and S
N

R
≅ .
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Now we may define the map 

*
c 1

3 * * *
c 1 c 1

G V (G)
f :VM

V (G) [V (G)VG]
−

− −

 
→ 

 
.

given by * * *
c 1x[SVF] (x)[V (G)VG]−π . One can easily 

check that the image of ƒ3 is 
*
c 1

* *
c 1

V (G) V(G)
[V (G)VG]

−

−

 , which is 

the same as the kernel of ƒ2. Finally, we define the map 

4 *
c 1

G
f :VM(G) VM

V (G)−

 
→  

 

in the natural way. one notes that its image is 

*

*
(R V(F))[SVF]

[SV F]


On the other hand, we have Ker ƒ3 = im ƒ4. This 
gives the exactness of the sequence  and the proof is 
completed.

Corollary 2.3: By the assumption of theorem 2.2, if the 
Bear-invariant of G is trivial, then

c
c

G
VM V(G)

V(G)
 

≅ 
 

Proof: Using theorem 2.2 section (i) VM(G) be trivial 
then we have the following sequence 

c
c

G
1 V M V (G) 1

V(G)
 

→ → → 
 

this complete the proof. 

Theorem 2.4: let ϑ be a variety of groups  and G be a 
ϑ-nilpotent group, then VP(G) is ϑ-nilpotent.

Proof: Suppose that G be a ϑ-nilpotent group group of 
class c≥1. Such that G has free presentation 

F
G

R
≅ , we have Vc+1(G) = 1 it follows that

c 1
FV 1
R+

 =  
. Hence by using lemma 2.1 we have 

c 1V (F)R
1

R
+ =

it implies that c 1V (F) R(*)+ ⊆ . Now we show that VP(G) 

is ϑ-nilpotent, we have 

*
c 2

c 2 c 2 * *

* * *
c 2 c 2

* *

V (V(F))[RV F]V(F)V (VP(G)) V
[RV F] [RV F]

V (F)[RV F] [V (F)V F][RV F]
[RV F] [RV F]

+
+ +

+ +

 
= = 

 

⊆ =

and by (*)we have * *
c 1[V (F)V F] [ R V F ]+ ⊆ i.e

c 2V (VP(G)) 1+ = . This complete the proof.

Theorem 2.5: Let G be a ϑ-nilpotent group of class 

c≥2 and F
G

R
≅ be a free presentation of G then; 

(i)
*

c
c *

c

G [V(F)RVF]
V (G) VM(G) V M

V ( G ) [RV F]
 

=  
 

(ii)
*

c
*

c

G [V(F)RV F]
e(M(G)) e V M e

V(G) [RV F]
    

≤          

(iii)
*

c
*

c

G [V(F)RV F]
d(VM(G)) d V M d

V (G) [RV F]
    

≤ +         

Proof: (i) we can write 

cc

c
*

c c

F
G RVM V M

V (F)RV(G)
R

F V(F) V(F)RVM
V(F)R [V(F)RV F]

 
  

=   
    

 
 

≅ ≅ 
 



Then We have 

c
*

c c

G (V(F) R)V(F)
VM

V(G) [V(F)RV F]
 

≅ 
 



so
c

*
c

* *
c c

*

(V(F) R)V(F)
(V(F) R)V(F)[RV F]

[V (F)RV F] [V(F)RV F]
[RV F]

≅




And

*
c c

* *
c

(V(F) R) V(F) G [V(F)RV F]
V M

[ R V F ] V ( G ) [ R V F ]
 

=  
 



this consequence that 

c
*

c c

c
*

c c
c

c

(V(F) R)V(F)
(V(F) R)V(F ) V(F)[ R V F ]

(V(F) R ) (V(F) R) (V(F) R V(F))
[ R V F ]

V (F) V(F)R V(G) (*)
(R V(F)) R

≅ ≅

≅ ≅ =
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so we can write 

c
c*

(V(F) R)V(F)
V( G) VM(G)

[ R V F]
=



(ii) We have 

c
* *

(V(F) R) (V(F) R) V(F)
e(VM(G)) e e

[RV F] [ R V F ]
   

= ≤   
  

 

so by use of isomorphism theorem we have 

*
c

*
c

G [V(F)RV F
e(VM(G)) e V M e

V (G) [ R V F ]
    

≤          

(iii) We have

c
* *

*
c 1

*
c

(V(F) R)V(F)V(F) Rd(VM(G)) r(VM(G)) r r
[ R V F ] [ R V F ]

[V (F)RVF]Gr V M r V M
V (G) [R V F]

+

   
= = ≤   

   
    
 ≤ +             



And since 
*

c 1
*

[V (F)RV F]
[ R V F ]
+  is abelian because

* ' * *
c c c

* * * *
c c

* * * *
c c c

* * * *
c

* *
c c 1

*

[V(F)RV F] [[V (F)RVF],[V (F)RVF]]

[[V(F)VF][RVF],[V(F)VF][RVF]]
[[V (F)VF],[V(F)VF]][[V(F)VF],[RVF]]

[[RVF],[RVF]][[RVF],[V(F)VF]]

[[V(F)VF],V(F)][[V (F)VF],V(F)]

[RVF][V(F),
−

=

=

=

⊆
* *

c[V(F)VF] [RVF].⊆

The proof is completed. 

Theorem 2.6: The semi direct product of two groups 
that are ϑ-nilpotent is a ϑ-nilpotent group.

Proof: Let ϑ be an arbitrary variety of groups and H,K 
be two groups such that ϕ:H→Aut(K) be an arbitrary 
homomorphism and G = H×ϕK. Thus there exists two 
subgroups M and N such that and G = MN,M∩N = 1(*)

so M and N are ϑ-nilpotent and by isomorphism
theorem we have 

G M N M
N N N M
= ≅


and G MN N

M M M N
= ≅



thus G/N, G/M are ϑ-nilpotent groups.
Becausee M and N are a ϑ-nilpotent groups. Now 

by lemma 2.1 we have 

r
r N

G V(G)NV 1
N N

 = =  
and

r
r M

G V ( G ) MV 1
M M

 = =  
.

Thus Vr(G)⊆M∩N and by (*) we have Vr(G) = 1 
thus G is a ϑ-nilpotent group.

CONCLUSION

In this note, we show if G be a ϑ-nilpotent group, 
then VP(G) is also ϑ-nilpotent and we also prove exact 
sequence about Bear-invariant of G.
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