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Abstract: Production systems as a principal process, normally include numerous associated sub-processes
(stages) in which output quality of earlier stages affects quality of next stages. This study recommends a 
solution which allows us measure effect of each stage on output quality of the next stage. A distinct aspect 
of this solution is the use of information which is produced by different degrees of correlation between 
product quality and that of within and between the production stages of the system under study. In this 
study, we show how the estimates obtained by this method can be used to measure the effect of operational 
variables at each stage on variation of production quality, identification of stages in production system on 
which managers and engineers should concentrate their quality improvement efforts and to assess potential 
effect of process improvement on output and final product quality. 
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INTRODUCTION

Today, with ever increasing growth of human
knowledge and technology and strong dependence of 
societies on its advantages, the issue regarding quality 
of technology design, manufacturing, supports and its 
economics is of high importance in business decisions. 
On the other hand, increasing competition between 
firms and societies in acquiring high quality and low 
cost technologies has sharpen fighting against economic 
and social losses arising from pure quality and systems 
(processes, goods and services). In this regard, since 
most of these systems are affected by random factors 
and deviation is considered part of their functional
nature, statistical quality control in the sense of
application of statistical principles and techniques
throughout design, production, supports and service 
stages of these technologies aiming to satisfy economic 
desires have a special position.

The conventional methods of process control such 
as Shewharts’ charts, exponential weighted moving
average chart, cumulative sum chart and other similar 
techniques are very easy to use and when properly 
applied, they can be effective in giving necessary
signals about existence of instability of the process. The
conventional control methods, generally, assume that 
product quality variables (characteristics) different
stages of a production system are independent, while in 
many instances, these variables to a large extent are 
dependent on each other. It has been found that the 

control methods which ignore dependence between 
variables, compare to methods that take into account 
these interdependence, are less able to explain causes of 
deviation from control Hawkin [1]. Hence, many
researchers have emphasized on necessity of using 
multi-variable methods in statistical control of process. 
So far, several control charts have been suggested for 
multi-variable data, but most of these methods concern 
systems of only one production stage, while many 
production systems have more than one stage in which 
output quality of one stage not only indicates
operational effect of that stage, but also comprises 
operational effects of previous stages. Therefore,
despite high ability of multi-variable control methods in 
detecting causes of deviations from control, when these 
methods are used in multi-stage systems, since they 
have not been designed specifically in these systems’ 
environment, they are not able to systematically use the 
information related to correlation between
characteris tics of product quality through the stages and 
hence they are unable to identify the stages out-of-
control.

In recent years, many researchers have focused on 
study and monitoring of multi-stage systems. A
prominent feature of multi-stage production systems is 
that the output quality of stage i in addition to
indication of operational affect of the stage i, represents 
quality of input to this stage as well. Hence, if one stage 
goes out-of-control, the conventional process control 
methods  may  mistakenly  imply  that earlier stages are
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out-of-control. Therefore, if operational effect of each 
stage  can  be  separated  from  earlier  stages,  not  only 
condition of being out of process control can be
determined, but also the stages out of the system control
can be identified.

This article recommends a new multi-variable
method for control of process and product quality in 
systems with interdependent stages. This method,
unlike the conventional methods of process control, 
clearly uses the information related to dependence
between product’s quality specifications within and 
between stages. In addition, this method is not only 
used to determine condition of being out-of-control, but 
also by taking into account the input quality to each 
stage is very useful in identification of the system’s out-
of-control stages. Identification of out-of-control stages, 
especially in those operations is very crucial that
examining sources of deviation from control is very 
expensive. Besides, identification of out-of-control
stages enables producer to resolve failures in operation 
as quickly as possible and hence to reduce number of 
products produced in out-of-control conditions in these 
production stages.

Another problem that producers are confronted is 
control and explanation of a large volume of data
obtained from process and products. Unlike the existing 
control methods, the method that we develop in this 
research is very suitable for control of a large number 
of variables. An important aspect of this method that 
reduces the observed variables to fewer numbers of 
factors not only makes interpretation simpler but also 
protects major part of information regarding main
variables. Reduction in data volume can make the
process control simpler for production employees.

This paper suggests a solution by means of which 
operational effect of each stage on output quality of 
final product can be measured. One distinct aspect of 
this solution is use of information related to correlation 
of product’s quality specifications inside and between
the system’s stages. In general, this solution suggests 
that relationship between quality specification of one 
stage and the measured quality specifications at earlier 
stages is expressed by means of a linear regression 
relation. This method intends to control a stage by 
taking effect of earlier stages’ quality specifications 
from quality specification of that stage. The
recommended control method is carried out in two 
steps. In the first step, using the obtained data from 
production system, regression model parameters are 
estimated then by looking backwards, it is tested
whether at the time of data gathering the system has 
been under control or not? Purpose of the first stage is 
obtaining a set of under control data which are used for 
control of production system’s future observations. In 

the second stage, the obtained model in the first stage is 
used to test under control being of the system when 
next units are producing.

The aim of this paper is to answer the following 
principal question:

Does use of the control method which takes
dependence between stages in to account in
identification of sources and conditions of being out-of-
control has more efficient relative to the conventional 
methods of process control?

In the following, after analysis of research
background, the recommended model will be explained.

The remainder of the article proceeds as follows. 
The next section presents, describes and analyses the 
literature review. Section 3 presents the mathematical 
development to study and present the research’s model 
for statistical control of correlated processes. Sources of 
variation in production quality, data reduction and
estimation of model’s parameters are other essential
points that we consider in this section. In section 4 we 
applied the developed model and described the results. 
At  the  end  of  this  section  we  discourse  about  the 
effect of process improvement on production quality. 
Section 5 presents the procedure of execution of control 
method. The conclusions are in the last section.

LITERATURE REVIEW

In some continuous product-manufacturing
operations, a basic statistical assumption of
independence is often violated, i.e. data collected at 
regular time interval from these processes are serially 
correlated Cook and Chiu [2], Montgomery and
Friedman [3]. Due to this autocorrelation, traditional
control charts such as X and R charts result in a large 
number of false out-of-control alarms (Cook & Chiu). 
Thus, reactions to these false alarms often result in 
costly over-control of a process.

To use a control chart such as X  chart for process 
mean monitoring or R chart for deviation monitoring, 
some samples in the course of time are taken from
process and the statistics and values related to them are 
drawn on a chart. In the introduced chart by Shewhart, 
upon the moment when the calculated statistic by a 
sample falls out the control limit, an out-of-control
signal is given by this chart  Shewhart [4]. This limit 
normally is set at ± 3 times of the drawn  statistic’s 
standard  deviation  from  a  central line which is called 
process mean. These limits are called 3 sigma control 
limits. For more information regarding the concepts and 
instances used from control charts refer to Ryan [5] and 
Woodall & Adams [6].

Several attempts have been made in some literature 
to  extend   traditional SPC  techniques   to   deal   with 
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correlated parameters. Alwan and Roberts [7],
Montgomery and Friedman, Wardell et al. [8], and 
Moskowitz and Plante [9] recommended the use of time 
series modeling techniques for monitoring correlated 
processes. Wardell et al. conducted an extensive study 
of the performance of four different control charts, i.e. 
Shewhart, EWMA, the common-cause control (CCC) 
and the special-causes  control (SCC which is also 
called residual chart). Their results showed that the 
EWMA chart was quite robust to data correlation while 
CCC and SCC worked very well when the process 
mean shifts exceeded two standard deviations. But they 
found that in many cases SCC did not perform well 
when the processes are positively correlated. 

Runger, Willemain and Prabhu proposed the use of 
cumulative sum (CUSUM) control chart for monitoring 
the residuals produced by an ARMA model [10].
However, this model does not perform effectively when 
the processes are positively correlated. Wright, Booth 
and Hu suggested a joint estimation outlier detection 
approach to control short -run correlated processes [11]. 
In their research, ARIMA model was used as
characterizing time series data to detect and identify 
four different abnormal types of correlated process.
Other authors such as Schmid [12], Adams and Tseng 
[13] and Timmer [14] have also proposed different
views for monitoring correlated observations. These
control chart methods have been shown to improve 
monitoring performance in the presence of
autocorrelation.

In issue of process statistical control, control of 
multi-variable data has got considerable attention. So 
far, several control charts for multi-variate data have 
been  suggested  including T-Hotelling Charts and 
Multi-Variable Cumulative Sum Charts. However, the 
obvious  limitation  of  these  charts  is  that they cannot 
be used for identification of out-of-control quality 
specifications. To solve this problem, Hawkin
suggested a multi-variable control method which has 
been based on the adjusted regression variables. This 
researcher with little changes in his proposed method, 
presented a new method for control of systems in which 
despite presence of dependence between quality
specifications, a change in one variable will not
necessarily lead to change in another variable [15].
Although Hawkin’s studies are powerful with regard to 
control of multi-variable data, these methods have not 
been designed specifically for use in multi-stage
systems and hence they are not able to systematically 
identify out-of-control stages. Wade and Woodall by 
formulating relationships between input and output
variables presented a new method called Cause
Selection Charts for two-stage systems which was 
based   on   the  assumption  that  relationships  between 

the model’s variables are predetermined and correctly 
estimated [16]. Shu and Tsung while referring to
problems of Wade and Woodall’s model, by applying 
some changes to charts of cause selection, tried to 
identify out-of-control stages in two-stage systems [17]. 
In addition, these researchers by generalizing their
suggested method and introducing Multi-Variable
Cause Selection Charts have offered a new method for 
control of two-stage systems [18].

Following the work of Yang and Hancock [19],
where each rational subgroup is assumed to be a
realization of a multivariate normally distributed vector 
with an arbitrary correlation matrix, Liu et al. [20]
studied the effect of the correlation on the economic 
design of the X chart. This study was extended to X 
charts with double sampling or with variable
parameters: Chen and Chiou [21] considered variable 
sampling intervals, and Torng et al. [22] considered 
double sampling. Bin Wu and Yu, J.B., present a neural 
network-based identification model is proposed for both 
mean and variance shifts in correlated processes [23]. 
Costa and Machado presented a pure Markov chain 
approach to investigate the properties of the X chart 
with variable parameters (VP) and the X chart with 
Double Sampling (DS) [24]. 

As was mentioned, most of these methods have 
been designed for control of two-stage systems. One 
interesting exception to this is the solution presented by 
Zantek et al. [25] which is a monitoring method for 
multi-stage systems and not only is capable in
identifying the out-of-control stages, but also at each 
stage, it can identify the factors contributing to being 
out-of-control. Also, these researchers by taking input 
quality of each stage offered another solution for
control of multi-stage systems [26].

Methods such as T-Hotelling and CUSUM charts 
for control of multi-variable data have been
recommended. Since these methods simultaneously
examine all quality specifications of product, in case 
the process is out-of-control, they are not able to 
specify the out-of-control specifications. To solve this 
problem, Hawkin introduced a new multi-variable
control method which is founded based on regression 
relationships of quality specifications. In this method,
to examine whether a quality specification is under
control,  the  residue  control  obtained  from  the 
intended specification regression over other quality 
specifications will be used. Since in many systems due 
to high correlation of quality specifications with change 
in one specification some other specifications may
undergo changes, use of these specifications as
auxiliary variables in regression relation  is  not
suitable. Therefore, by little changes in his
recommended   method,  Hawkin  offered  a new method 
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Fig. 1: Production stages of a product

for control of these systems. In this method, for control 
of a quality specification, in the respective regression 
relation, only the specifications are taken into
consideration  as  auxiliary  variable  that  by  change
of the intended specification do not undergo change. 
The method recommended by Hawkin [8], despite its 
high capability in control of multi-variable data, since it 
is designed specifically for control of multi-stage
systems, in case of being applied to these systems, it 
won’t be able to identify out-of-control stages. 

The issue of multi-stage systems is a new subject 
and began with studies of Wade and Woodall. These 
researchers by formulating relationships between input 
and output quality specifications in a two-stage system 
embarked on identification of out-of-control stages. In 
this regard, to control the first stage, the quality
specification control measured at this stage is used, 
whereas for control of the second stage, the obtained
residue from regression of the measured quality
specification at this stage over the first stage quality 
specification will be used. In this method, it is supposed 
that regression relation of input and output quality 
specifications have been correctly  estimated or they are 
predetermined. Shu and Tsung by generalization of
Wade and Woodall’s recommended method presented a 
new technique for control of two-stage systems which 
includes two different phases. In the first phase,
parameters of regression model using the under-control
observations will be estimated and in the second phase, 
by using the observations during manufacturing the 
process and the estimated model in the first phase are 
monitored. In this method, unlike the recommended 
method by Wade and Woodall, the regression model 
stability in the course of time is tested. These
researchers in 2004 generalized their recommended
method   and   presented  a  new  method  for  control
of  two-stage  systems  in  which  quality  specification 
of the second stage is a function of several quality 
specifications measured in the first stage. Besides,
Zantek et al. by modeling quality link between stages 
offered a technique for control of the systems which are 
made out of more than two stages. These researchers
using a simulation study and analytical study examined 

their recommended method in identification of out-of-
control conditions.

RESEARCH’S MODEL INTRODUCTION

To describe the problem, suppose a production 
system includes M stages. As is shown in Fig. 1, the 
stages are numbered in ascending order so as if the 
stage i is ahead of the stage k, we will have: i<k.

At each stage of the system, one or more
operations are executed and after each stage, the
product   is   tested.  This  test  includes  measurement
of one or more products specifications called quality 
specifications.

Suppose the continuous variable y ij indicate quality 
specification j of the product which has been measured 
at stage i so that i = 1,…M, j = 1,….qi, in this case: 

M

i
i 1

q q
=

=∑ (1)

represents total number of product’s quality
specifications  which  are  measured  in  the  whole 
system. In addition to product’s quality specifications, 
operational variables (controllable factors) like
environmental condition and equipments’ efficiency
degree may be measured as well. Also, suppose xij
represents the operational variable j which has been 
measured at stage i so as i = 1,…M, j = 1,….qi, in 
which case:

M

i
i 1

p p
=

= ∑ (2)

indicates total number of operational variables which 
are measured in the whole system.

Now, supposing that product’s quality
specifications which are measured at stage i, are
directly under influence of operational variables at
stage i and quality specification of input product is to 
stage i, product’s quality specification, yij, can be
modeled as a function of the following instances:
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A) Operational variables at stage i and
B) Product’s Quality specifications which have been 

measured in output of previous stages. 
(i = 1,…M, j = 1,….qi,)

In this relation, in order to provide a general
formula for the model, suppose:

αijl: Represents direct effect of the operational variable 
j of the stage i on the measured quality
specification of product in output of the stage i.

Di: Represents sum of the stages before stage i.
βijkl:Direct effect of the measured quality specification j

of product in output of stage i the measured quality 
specification l of product in output of stage k, in 
which:

i k kk 1,....M jj 1,....q l 1,....q i D= = = ∈

Thus, by supposing the relation linearity, the
general model with required details is as follows: 

k i

k

p q

kl kjl kj ijkl ij kl
j 1 i D j 1

y x y
= ∈ =

= α + β + ε∑ ∑∑ (3)

In which, εkl is random error with mean zero and 
variance of 2

klσ .
The model of simultaneous equations (3) indicates 

the point that the product’s quality specification, ykl, is 
as a linear combination of the following instances:
A) Operational variables at stage k:

kp

kjl kj
j 1

x
=

α∑

B) Measured quality specifications of product in
output of previous stages:

i

k

q

ijkl ij
i D j 1

y
∈ =

β∑ ∑

C) Random error: εkl

In this relation, it is assumed that εkl represents
effects  of  operational  variables  not-considered  at 
stage k on ykl and for all i, j, k and ls, εkl and xij are
uncorrelated. Now, to facilitate next discussions with 
regard to the model, the below matrix (vectorial)
symbols are introduced:

yi = (yij): Represents a 1*qi vector of the measured 
quality  specifications  of  product at stage i (i = 1,…M, 
j = 1,….qi)

xi = (xij): Represents a 1*pi of the measured
operational variables at stage i (j = 1,…pi).

Ai: Denotes a pi*qi parameter matrix the element j
of which is equal to αijl so as Ai includes direct effects 
of operational variables at stage i on product’s quality 
specifications which are measured in output of stage i.

Bik: Denotes a qi*qk parametric matrix the element 
i of which is equal to βijkl and includes direct effects of 
product’s quality specifications at stage i on product’s
quality specifications in stage k where i∈Dk.

These definitions enable us to rewrite the model of 
simultaneous equations into a matrix form:

k

k k k i ik k
i D

y x A y B
∈

= + + ε∑ (4)

In which, εk is vector of 1*qk random errors the 
element l of which is εkl and its mean is zero.

For simplification of the next discussions, suppose 
A is diagonal-block matrix of parameters so that its 
block i is equal to matrix Ai and A includes direct 
effects of operational variables on product’s quality 
specifications. In addition, B is a matrix of parameters 
in which if the stage i is ahead of k, the ik sub-matrix of 
which is equal to Bik, else it is equal to zero qi*qk
matrix and B includes direct effects between product’s 
quality specifications.

These definitions enable us to rewrite the model (4) 
as follows:

y xA yB= + + ε (5)
where,

1 M 1 Mx (x,...x ),y (y,...y )= =

1 M( ,... )ε = ε ε

have a zero mean and variance-covariance matrix of 

E( )′ε ε = ∑

Sources of variation in production quality: Now, we 
obtain a formula which will enable us to specify
operational effect of each stage on variation in
product’s quality specifications. Since variation, in
general, leads to improvement of quality, reduced
losses, reduced reworking and guarantee costs,
identification of variation sources is considered an
important part in quality improvement activities. We 
begin this topic with changeability analysis in product’s 
quality specifications. With deduction yB from both 
sides of the relation (5), we have:

y(I B) xA− = + ε (6)
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Since matrix B is an upper-triangular matrix, there 
is C = (I-B)-1 and by multiplying it with the relation (6) 
we will have:

y xAC C= + ε (7)

By taking variance from both sides of the relation 
(7) (under assumption of non-correlation of errors and 
operational variables) we will have:

var(y) CAvar(x)AC C C′ ′ ′= + Σ (8)

In which, var(.) denotes  variance-covariance matrix (.).
The relation (8) enables us to determine share of 

each stage in changeability of product’s quality
specifications. In addition, the relation (8) also enables 
us to assess potential effects of process changeability on 
production system’s efficiency and changeability in 
product’s quality specifications.

Data reduction: In many production systems, some
variables are highly correlated because they are
produced by similar basic factors or variables. This 
situation is regarded undesirable, because some of these 
variables are redundant and estimation of the model’s 
parameters may be affected by them. Therefore, if data 
are multi-dimensional, we use factorial analysis to
explain observational variables with fewer variables
which are called factors. After determining the factors 
and their observational values, for estimation of n
observations of each factor, we will use an algorithm 
called Partial Least Squares (PLS). This algorithm,
estimates observations of each factor by writing that
factor as weighted sum of its observed values.

Estimation of model’s parameters: Now, for
estimation of the parametric matrices A and B, we write 
model (3) for all observational combinations as follows:

kl kl kl klY Z= δ + ε

k(k 1,....M l 1,....q )= = (9)

In which, Ykl represents a n*1 vector of
observations  related  to  the  product’s  quality
variable ykl.

As is specified in model (3), Zkl is the
observational matrix of data n of ykl descriptive
variables, δkl is a perpendicular vector of parameters 
and εkl is a n*1 vector of uncorrelated random errors.

Since the matrix B in relation (5) is an upper-
triangular matrix, in case equation errors are
uncorrelated  (matrix Σ being  diagonal),  model  of the

introduced simultaneous equations will be recessive. In 
this regard, parameters of each equation are estimated 
by normal PLS method. Therefore we will have:

1
kl kl kl kl kl

ˆ (Z Z ) Z y−′ ′δ =  for all l and k (10)

If Â  and B̂  denote the obtained matrices by 
replacement of the estimated parameters using relation 
(10) in matrices A and B. the matrix which gives fitting 
to values is obtained by the following relation:

ˆˆ ˆY XA YB= + (11)

In which, X is n*p matrix from observation of
operational variables and Y is matrix of data n*q from 
observation of product’s quality specifications.
n*q residues matrix is calculated from the below
relation:

ˆE Y Y= − (12)

And variance-covariance matrix of errors is
estimated using the following relation:

ˆ E E / n′Σ = (13)

MODEL APPLICATION AND RESULTS

In this section, the introduced solution in the
previous section will be applied to mobile phone
production line of Motorola Company. Figure 2 shows 
production line of this company which include M = 2 
assembly phases board and Module. Board assembly 
phase which starts from soldering machine and end in 
manual soldering comprises 9 sections. In section
soldering machine, a solder material is used for each 
board. In each one of the three next sections, an 
electrical part is placed on the board. Next, in section of 
manual assembly, a worker assembles additional parts 
on the board. In thermal section, the board is put in a 
furnace and soldering material is melted. Next, the
board is cooled again and the soldering material
becomes solid once again. Then, in manual section, a 
worker assembles other additional pieces on the board. 
To solder these parts on the board, we thrust them into 
the soldering material. After completion of the board 
assembly, in section of board resting, 11 product’s 
quality specifications are measured. In module
assembly phase, the final product by combination of the 
board with output of other production lines is
assembled and in section of module testing, 30
product’s quality specifications in the final product are 
measured.
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Table 1: Observational factors and variables

Weight*** Correlat ion coefficient** Mean variance* Observed factors and sizes

0.50 0.99 0.99 x11 automatic assembly machine 1: observational variable 1
0.60 0.99 Automatic assembly machine 1: observational variable 2
0.47 0.97 0.96 x12 automatic assembly machine 2: observational variable 1
0.60 0.99 Automatic assembly machine 2: observational variable 2
0.50 1.00 100 x13 automatic assembly machine 3: observational variable 1
0.50 1.00 Automatic assembly machine 3: observational variable 2
0.58 0.92 0.58 y11 board test: observational variable 1
0.52 0.90 Board test: observational variable 2
0.64 0.89 0.70 y12 module test: observational variable 1
0.49 0.77 Module test: observational variable 2

*It is a ratio of variance which explains every factor
**It is equal to correlation coefficient between observational variables and factors
***Weights are used for calculation of factors’ values. For example, y11 is calculated as follows

(Board test: observational variable 2)×(o.52) + (board test: observational variable 1)×(0.58)

Row Board

Solder
Equipment

Automatic
Assembly
Machine1

Automatic
Assembly
Machine2

Automatic
Assembly
Machine3

Nonautomatic
Assembly
Machine

Temperature
Department

X 11

X12

X 13

Y11

Y21 Module
Test

Module
Assembly

Board
Test

Manual
Solder

Solder
Liquid

Manual
Assembly

R2=0.43

t=12.1

0.66

0.59
t=7.5

R2=0.37

t=1.84
0.13

Fig. 2: Production line
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Table 2: General effect of factors*
Quality variables ’products
------------------------------------------------------

Stage Variable y11 y21

Automatic assembly machine 1 x11 0.59 0.39
Automatic assembly machine 2 x12 0.00 0.00
Automatic assembly machine 3 x13 0.13 0.09
Board test y11 0.00 0.66
Module test y21 0.00 0.00
*General effects have been obtained from estimation replacement of parameters of matrices A and B in equations 5 and 6

Table 3: Changeability sources in product’s quality specifications
Source *Percent of deviation in y11 *Percent of deviation in y21
Automatic assembly machine 1: x11 36 15
Automatic assembly machine 2: x12 0 0
Automatic assembly machine 3: x13 2 1
Ignored variables in board assembly stage 62 27
Ignored variables in module assembly stage 0 57

Data: Data of this study have been selected from
several databases of Motorola Company. Each case in 
this database corresponds with a board and includes 11 
sizes of the measured product’s quality specifications in 
board testing section and 30 sizes of the measured 
product’s quality specifications in section of module 
testing together with operational variables of
equipments in each one of which the three sections of 
automatic equipments have been measured. All
variables for purpose of confidentiality protection have 
been coded (In phase module assembly, no operational 
variable is measured).

Data reduction: Empirical (experimental) analysis
begins with execution of factorial analysis in sections 
where multiple variables have been observed. Based on 
results of these factorial analyses, 47 observed variables 
have been reduced to 31 factors so as for each
automatic assembly machine; the two observational
variables have been reduced to one factor. Similarly, 11 
product’s quality specifications which had been
observed in section of board testing were reduced to 8 
factors and 30 product’s quality specifications which 
had been observed in section of Module testing were 
reduced to 20 factors. Table 1 lists a number of the 
factors which have been specified through factorial
analysis. To avoid presentation of a large volume of 
results, only one of the factors which had been specified 
in sections board testing and module testing are
reported. Name of all variables for sake of data
confidentiality is eliminated. Values of each factor
using  Partially  Least  Square  (PLS) algorithm have 
been estimated. Table 1 also shows weights used for 
calculation of each factor’s values.

Model and experimental results: Production line
model and this model’s parameters estimation using a 
solution explained earlier together with their t-statistic
and R2-statistic value of each equation are shown in Fig. 
2. By study of results in Fig. 2 it is seen that direct 
effect of operational variable (factor) x11 on product’s 
quality specification y11 is equal to 0.59. Since these 
coefficients are standardized, this value implies that as 
a result of one unit increase of standard deviation in x11,
the expected increase in y11 is equal to 0.59 unit. In 
addition, this figure shows that the operational factor 
x12 has no effect on y11, but the factor x13 has a direct 
effect of 0.13 on y11. Also, it is seen that output quality 
of module assembly phase is significantly affected by 
output quality of assembly phase. Specifically, it is seen 
that y11 have direct effect of 0.66 on y21. Finally x11 and 
x13 each has indirect effect on the product’s quality 
specification y21.

Table 2 shows estimation of each factor’s general 
effects on product’s quality. Given this table, we find 
out that general effect of x11 on y21 is equal to 0.39 
which suggest that as a result of one unit increase of 
standard deviation in x11, the expected value increase in 
standard deviation of y21 is equal to 0.39 unit. In 
addition, given this table we find out that general effect 
x13 on y21 is equal to 0.09.

Determining the improvement opportunity: To break 
down variance of product’s quality specifications into 5 
constituents, relation (8) and the estimated parameters 
are used. Results are shown in Table 3.

This table shows that 36% of y11 variation has been 
the result of change in variable x11. Remaining variation 
of  y11  is  the  result  of change  in  variable x13 (2%) and
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Table 4: Prediction of effect of process improvement on changeability of production quality
Change in functional variables variation *Forecasting of variation in product’s quality specification
------------------------------------------------ ------------------------------------------------------------------

Process improvement plan x11 x13 y11 y21

A -25% 0.00% -8.60% 3.70%
B 50% 0.00% 17.30% -7.50%
C 0.00% -25% 0.04% -0.02%
D 0.00% -50% 0.80% -0.40%
E 25% -25% -9.10% -3.90%
F -50% -50% -18.10% -7.90%
*They are obtained from parameters estimation and equation (8)

other operational variables which have not been
measured in assembly phase (62%). In addition, by 
further study of Table 3 we find out that the main 
variation sources of y21, is variable x11 (15%) and other 
operational variables which have not been measured in 
module assembly phase (57%). The remaining variation 
in y21 is the result of x13 (1%) and other operational 
variables which have not been measured in assembly 
phase (27%).

Results of Table 3 definitely suggest that managers 
and engineers should concentrate their improvement 
efforts on the automatic assembly machine (1) and 
module assembly phase. Table 3 also indicates that 
reduction in variation of y21 requires improvement of 
both module assembly and assembly phases.

Effect of process improvement on production
quality: To predict a degree of variation decrease in 
product’s quality which arises from changeability
decrease in process relation (8) and the estimated
parameters are used. Table 4 presents predicted effects 
of 6 different programs of process improvement on 
changeability of product’s quality specifications.

Similar to results of Table 3, results of this table 
shows that variation decrease in the operational variable 
x11 has significant potential effect in variation decrease
in product’s quality. For example, given this table, it is 
predicted that by 50% v reduction in x11, variation in y11
and y21 decreases to 17.3% and 7.5%, respectively. In 
addition, it is predicted that variation reduction in x13
has slight effect on changeability of product’s quality 
specifications. This kind of analysis helps manager
determine whether investment on a quality
improvement program is justifiable or not.

The obtained results are also useful for
interpretation of process control statis tical charts and 
determination of stages which are responsible for
deviation from statistical controls. As was earlier
discussed, results in Fig. 2 indicate that output quality 
of module assembly phase is significantly under effect 
of output variation quality of the board assembly phase. 

As a result, when the phase board assembly goes out of 
control, output quality of module assembly phase is 
affected. Hence, ordinary control diagrams (Shewhart 
charts etc) may mistakenly give the indication that the 
both phases of board assembly and module assembly 
are out-of-control. Therefore, this aspect lays stress on 
necessity of monitoring methods which take phases’ 
quality links into account.

Execution of control method: In this section, the
recommended control method using mobile phone
production line data will be explained.

Step 1: Data collection: A sample size of n = 90
boards of production line has been obtained.

Step 2: Data reduction: At this stage, as has been 
earlier explained, factorial analysis is employed. As a 
result of this factorial analysis, 47 observational
variables were reduced to 31 factors. Then, 90 values of 
each factor using the estimated weights for PLS
algorithm are calculated. For instance, the observation t
of the factor x12 is calculated as follows:

12t 121t 122tx 0.47 v 0.60 v= +  for all (t=1, …, 90) (13)

In which, ν21 and ν122 are observational variables of 
factor x12.

Step 3: Model’s parameters estimation: At this stage, 
model parameters of Fig. 2 using ordinary PLS method 
are estimated. Estimation of these parameters has been 
shown in Fig. 2.

Step 4: Residues: To obtain residue of equation y11, the 
below term is calculated:

11t 11t 11t 13tˆ y 0.59 x 0.13 xε = − −  for all (t=1, …, 90) (14)

Next, the obtained residues from equation (14) are 
standardized as follows:
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Fig. 3:

Fig. 4:

11t
11t

ˆ
û

1 0.37
ε

=
−

for all (t = 1, …, 90) (15)

Note that the introduced statistic in equation (15) is 
used to test whether the unmeasured operational
variables in board assembly phase are under control or 
not.
Equation residues of y21 are calculated as follows:

21t 21t 11tˆ y 0.66yε = −  for all (t=1, …, 90) (16)

Then, the obtained residues from relation (16) are 
standardized as follows:

21t
21t

ˆ
û

1 0.43
ε

=
−

 for all (t=1, …, 90) (17)

Note that the introduced statistic in (17) is used to 
test whether the unmeasured operational variables in 
module assembly phase are under control or not.

Step 5: By  specifying  the  error  rate  of  first kind to 
the  amount  of  a = 0.0027, the following critical
values  will  be  obtained  for  each  test statistic (For 
some  test  statistics,  normality  assumption according 
to Shapiro-Wilk Test is refused. However, the normal 
probability  chart  suggests  that these deviations are not 

serious. Therefore, it seems logical the critical values to 
be used. In addition, results of Durbin-Watson Test 
suggest that the test statistics are successively
independent):

                                  (3.460,-3.460) (18)

To test under-control being of the operational
variable xij (i =1, j =1, 2, 3) when gathering data, the 
presented test statistic is compared with critical values 
in (18) (t=1,…90). By performing this test, it is found 
that all the test statistics are within these values. Hence, 
it is concluded that at the time of data collection of the 
variables x11, x12 and x13 have been under control.

Step 6: Finally, by comparing the statistics of (15) and 
(17) with critical values of (18) under-control being of 
the test’s unmeasured operational variables are tested 
(for all t = 1,…90). Test statistic of (15) for all t values 
falls within range on critical values which indicate
under-control being of the unmeasured operational
variables in board assembly phase at the time of data
gathering. Test statistic of (17) with regard to three 
boards fell outside the range of critical values which 
suggest out-of-control being of module assembly phase.

To clarify  this  point,  the  test  statistic  values  of 
(3 and 4) have been shown for 20 boards of initial 
sample  in  Fig.  3  and  4. Darkly colored  lines in  these 
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figures indicate critical values of (18). Results in Fig. 3 
indicate under-control being of board assembly phase at 
the time of data collection. Figure 4 shows that test 
statistic of (17) with regard to number 19 is outside the 
control limit indicating out-of-control being of module 
assembly phase. 

The next stage involves elimination of the three 
boards which have been outside the control limit and 
then stages 2 to 6 are iterated. Due to similarity of this 
stage with earlier stages, it is dispensed with its
explanation.

CONCLUSION

In this study, a solution was recommended by 
means of which one can measure operational effect of 
each stage on output quality of final product. A distinct 
aspect of this solution is use of information related to 
correlation of product’s quality specifications inside
and between the system’s phases. In general, this 
solution is relationship between quality specification of 
one  stage  and  the  measured  quality  specifications
in  earlier  stages  using  a  linear  regression relation. 
This method intends by taking effect of quality
specifications in previous phases from quality
specification of a specific stage to control that stage. 
The recommended control method is done in two
separate steps. In the first step, first, using the obtained 
data from production system, parameters of regression 
model are estimated then by backward looking it is 
tested whether at the time of data collection the system
has been under control or not. Purpose of the first step 
is to obtain an under-control data set in order to found a 
model which is used for control of future observations 
of production system. In the second stage, the obtained 
model in the first stage is used to test under-control
being of the system at the time of the next units’
production.
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