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Abstract: Magnetic resonance image (MRI) brain segmentation plays an mecreasingly important role in
computer-aided detection and diagnosis (CAD) of abnormalities. This task can be done by marking the interest

regions slice-by-slice but MRI segmentation manually is time consuming and consumes valuable human
resources. Hence a great deal of efforts has been made to automate this process. MRF has been one of the most

active research areas of MRI brain segmentation which seeks an optimal label field in a large space. The
traditional optimization method 1s Simulated Annealing (SA) that could get the global optimal solution with
heavy computation burden. Therefore great deal efforts have been made to obtain the optimal solution in a

reasonable time. In this paper, we conduct a comparative study with the traditional mimimization approach and
two novel proposed methods for segmentation of MR images. The qualitative and quantitative results of each

system are investigated as well.
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INTRODUCTION

(MRI)
segmentation 1s one of the most unportant steps in
computer-aided detection and diagnosis (CAD) of
abnormalities such as lesions or neurodegenerative
disorders such as Alzheimer disease, or movement's

Automatic Magnetic Resonance Tmage

disorders such as Parkinson. Various segmentation
methods have been proposed m the literature. Among
them, there has been significant interest in Markov
random field (MRF) based approaches m the past few
vears [1-4]. MRF 15 a statisic model which seeks the
optimal label field of the image voxels [5]. Using local
mteraction between voxels by defining neighborhood
system, MRF models spatial coherence constraints. This
causes noise effect reduction intensively; mstead, the
segmentation algorithm needs heavy computation burden.
In order to alleviate the computational load, many
methods have been proposed which involve solving an
energy function optimization [6-7].

This paper investigates three different algorithms for
seeking the optimal solution. The first is classical MRF
method which 1s based on Simulated Annealing (SA) [8].

This method
asymptotically but requires a great deal of computation.
The second method applies a hybrid of simulated

converges to the global optima

annealing (SA) and unproved genetic algorithm (IGA) in
order to optimize the problem which is formulated by MRF
[9]. The third algorithm is a social algorithm which tackles
the foraging behavior concept of ant colony combined
with gossiping algorithm to seek the optimal solution.
This paper 1s orgamzed as follows: in Section 2, MRF
model is introduced briefly. Section 3 describes the
optimization algorithms mn order to seek optimal solution.
Image segmentation experiment results are presented in
Section 4 and the conclusion is obtained in the Section 5.
Markov Random Field: MRF model poses image
segmentation as a labeling problem in which a set of
labels are assigned to the set of unage voxels. Suppose
that § = {s,8,....5} 18 a two dimensional image lattice
which for each site like 5 € S a gray level value is
assigned. A neighborhood system with respect to S 1s
defined as Mis) = {5, r € S|0 <||s — #| < d}, where d is a
constant and ||.|| means Euclidean distance. MRF seeks a
label field like ¥ = {3, € I"|s € S} where I' = (4,,4,,..,4;,) is
the set of tissue labels. Label field Y 1s a MRF if it satisfies
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Markovianity condition: P(Y,|¥y,) = P(Y, | Yy), which
states label of each site given other labels m Y only
depends on its neighbors. For determining this property,
a theorem was ascribed to MRF by Hammersley and
Clifford which stated the equivalence between MRFs and
Gibbs distributions [10]. According to this theory ¥ 1s
MRF if and only if

exp(—ET)/T)
Z . exp(— E()/T) (H

P(F)=

Where T is the system temperature, g is the set of all

possible label fields or configurations, £(Y) 1s an energy
function which is a sum of clique potentials over all
possible cliques. Clique means a subset of S, such as ¢, in
which all s € ¢ are neighbors of one another. We use 3
dimensional cliques. For two sites like s, » € S potential
functicn is defined as (2), in which v, is in-plane-clique
potential function and v, is out-plane-clique potential

functien.
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The optimal Y* is defined by maximum a posterior
(MAP) criterion: v* sargmaxy 5 (Pl |3,0)2(y]0)) - In which
P(y | 8) is Gibbs distribution according to Hammersley-

Clifford theory and P(x | ) adheres
distribution with mean p and variance o. Therefore the

Gaussian

MAP minimizes energy function (3).
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Optimization Algorithms

Simulated Annealing: One of the most prevalent
approaches in order to find the optimal solution in MRF
15 SA [11, 12]. SA relies on thermodynamic concepts
which its idea was motivated by an analogy to annealing
mn solids. SA 1s mtroduced by Metropolis et @f. in 1953
[13] and 15 a stochastic relaxation algorithm which carries
out by reducing the system temperature gradually. Cause
of the stochastic behavior, SA gets rd of trappmg
sub-optima. In other words SA has strong capability to
climb hills but slow convergence speed. Therefore the
combination of SA with MRF is not used for real time
processes.

Hybrid of IGA-SA: This method uses a hybrid of ITGA and
SA to seek the solution. Although SA is time consuming,
1t has a good capability of hill climbing. In comparison,
GA 15 weak 1 hill climbing but converges rapidly toward
the solution. Therefore an appropriate hybrid of these two
algorithms can alleviate their shortcomings. As stated in
[9], the algorithm begins with mutialization and population
generation. Then a loop start until the convergence
criterion satisfied. The loop contains following step.

Selection: Two individuals selects using roulette wheel
algorithm as parents.

Crossover: Two-point crossover 1s applied to generate
two offspring.

Mutation: Some genes of each offspring are selected
randomly and are mutated according to most frequent
gene 1n their neighbours.

Replacing: Parents are replaced with their offspring if
energy value of parent is bigger than energy value of
offspring or £ > exp(— AU/T), in which £ is a random
mumber between [0,1] and T is temperature and U is
defined in (3).

Temperature Reduction: The system temperature is
reduced.

Hybrid of ACO-Gossiping: We consider each site as an
ant which seeks for food. The goal of colony 1s to find ¥'*
(3). Attime (#+1), each ant transits from node i to node
according to state transfer probability 2, ™ [14].

{t+1) _ (rff} )“ (771,] )ﬁ
Seea (i) (0., /’ ©)

Inwhich Tl(f} 1s pheromone density between 1 andj, m;, ;

£

18 heuristic information between i and j, (2 all possible
destinations for ant, @ and j3 represent the influence of
pheromone
respectively. In this paper, heuristic information is
determined as 7, ; =— L7, +|min(-Z7 )| In which %7, is the
local energy at the path (i, j) and is defined as

ZCEC‘]VC
T

information and Theuristic mformation

B (xi - Ju‘j )2
“us no

+Iny2ro; + (5)
;

Where y; and ¢, are mean and variance of destination, ¥,
15 potential function of clique ¢, C, 1s a set of possible

cliques and 7 1s temperature.
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The standard ant colony system [14] performs two
update operations for updating the pheromone matrix. The
first update iz performed after the movement of each ant;
the second update is performed after the move of all ants.
These twwo steps are imposed in this paper. In addition, we
proposed a new updating method based on gossiping
algorithm which considers the coherence among the
neighboring voxels.

Local Update: When an ant passes through a path, it
reinforces pheromone trials. Therefore, the local update is
performed after the movement of an ant according
to,Where fi is the evaporation rate, is fitness value of the
destination and we define as Where x; is intensity of
source, i; is the mean of the destination.

Global Update: The second update is carried out after the

U |, Where r

movement of all ants as ;(+1) _ gy, 0, | 2T
U,

ig the pheromone decay coefficient, U is defined in (3).

Gossiping Update: Gosgiping or rumor spreading is one of
the information dissemination algorithms in distributed
systems. This algorithm inspired from spreading a piece
of gossip in social life [13]. When someone tells person A
a piece of gossip, he will try to tell other people who they
don't know beforehand (called susceptible). If he tells
person B who knows that {called infected), person A will
lose interesting in telling more. Here, ants are individuals
who interest to spread their pheromone information as a
gossip. Here we use a push-pull gossip protocol in which
A and B exchange gosgips with each other. In order to
simplify the algorithm we define neighborhood gossiping
as follow:

Finding Neighbours: Ant / finds its neighbors. Here we
define a 5x5 neighborhood window, called 2!}, which
demonstrates all ants who are neighbors with 1. Fig (1)
shows the defined neighborhood window.

Push Operator: Ant / assists all ants in the set MY to
make atrue decision in foraging process. In this process
| broadcasts its best destination, b, such as a piece of
gossip to r which re/V!). Therefore the pheromone matrix
is updated as (6), in which v is the pheromone reinforcing
coefficient, x; and x are intensities of sites 1 and r
respectively and (x- x,) imposes the fitness of path 7 2.

T = Ty T 7[1 = (5 —£,)/255], re N) (6)

Fig. 1: Neighbourhoods in gossiping update

If some of ants in N(1), know the gossip beforehand,
ant 1 loses interesting in spreading the gossip. Therefore
the fraction of nodes that will remain susceptible in next
iteration satisfies the equation (7), in which Nié(f—l)(;) 18
the infected neighbours and |.| means the size of set.

s [1_(|N§(:-1)(;)‘/‘Ng (;)D}‘Ng(z)\ 7

Pull Operator: In this step ant | receives the pheromone
information of its neighbours and updates the pheromone
matrix as follows 1, = 1, + v. ¢(¥), in which r e N/}, ke
€, (k) is relative frequency of path 74 in neighborhood
window, v is the pheromone reinforcing coefficient and £2
isthe get of all possible states which / can selects.

Experimental Results: We applied the methods to
segment two datasets. The first is normal MRI brain in
Internet Brain Segmentation Repository (IBSR)
dataset and the second iz multiple T1-wheighted and
gadolinium enhanced coronal MRI scans of a patient with
a tumour taken at roughly 6 month intervals over three
and a half years in IBSR. dataset. IBSR was provided by
the Center for Morphometric Analysis (CMA) at
Magssachusetts General Hospital and is available at
http:/faww.cma.mgh.harvard.edu/ibsr/. The intended
dataget iz in 336/ sub-folder and contains the result of
semi-automated segmentation which iz considered as
ground truth (GT) for wvalidating the
segmentation methods,

The methods are coded in MATLAB 7.2 running on
an Intel 2.00 GHz CPU system with 3.00G Bytes memories.
The volume overlap metric we use is the Dice similarity
coefficient (DSC) [13]. For a given pair of segmentation

automatic

volumes A and B, the measured overlap is.
K= 2AnB|/(JAIHB]) (8)

In which |.| means size of sets.
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Table 1: Algorithm Performance and Calculated Times

STND-MRF MRF-SA-IGA MRF-ACO-Gossiping

IBSR MR# K averge Calculated time (sec) K avemge Calculated time (sec) K avermge Calculated time (sec)
1-24/12 0.666 1313.483 0.666 169.250 0.669 263.764
1-24/14 0.665 1152.762 0.667 111.866 0.668 522.564
1-24/16 0.731 1398.474 0.731 189.269 0.734 657.938
1-24/18 0.776 1517.988 0.779 106.376 0.775 639.585
1-24/20 0.711 1542.545 0.717 152.710 0.718 706.002
1-24/22 0.675 1477.189 0.676 134.743 0.676 804.798
1-24/24 0.717 1181.077 0.724 118.189 0.721 518.789
1-24/26 0.690 1139.004 0.696 140.371 0.694 279.614
1-24/28 0.659 989.672 0.660 144.519 0.663 482.722
1-24/30 0.699 1036.734 0.702 97.211 0.705 356.984
1-24/32 0.713 1107.103 0.720 122.741 0.720 634.450
Average 0.700 1259.639 0.703 135.204 0.704 533.383

Table 2: Algorithm Performance and Calculated Times for

STND-MRF MRF-8A-IGA MRF-ACO-Gossiping

IBSR MR# K umour Calculated time (sec) [ — Calculated time (sec) [ — Calculated time (sec)
32i25 0.823 3184.442 0.838 230.771 0.794 T67.771

32126 0.719 2425.532 0.740 172.859 0.698 690.210

32127 0.532 2483.694 0.542 221.472 0.537 610.940

32i28 0.670 2528.072 0.721 175.761 0.587 676.341

32i29 0.565 2227.476 0.649 162.891 0.550 467.083

88126 0.811 2247.417 0.824 278.388 0.791 549373

88127 0.783 2090.443 0.802 223.548 0.751 T17.973

88i28 0.791 2100.650 0.813 107.468 0.781 882.279

88129 0.798 2109.861 0.814 180.158 0.762 T70.683

45125 0.671 2731.595 0.661 260.099 0.662 655.228
45126 0.759 2488.324 0.813 224.677 0.732 500.498
Average 0.720 2419.8 0.747 203.463 0.695 662.580

The average dice wvalues for normal MRIs and 0.720. This value for MRF-SA-GA and MRF-ACO-

tumour volume and calculation times of different
algorithms are shown as table 1 and 2. As indicated in
table 1, the standard MRF produces average sumilarity
measures of 0.700. This value for MRF-SA-GA and
MRF-ACO-Gossiping methods are equate to 0.703 and
0.704
reduction

respectively.  Additionally, calculation time
of MRF-SA-GA method
compared to standard MRF in average 1is 89.13%.
Also calculation time reduction percentage of
MRF-ACO-Gossiping method compared to standard
MRF is 57.83% averagely. Table 2 indicates that the
standard MRF produces average similarity measures of

percentage

Gossiping methods are equate to 0.747 and 0.695
respectively. Additionally, calculation time reduction
percentage of MRF-SA-GA method compared to standard
MRF in average 1s 91.56%. Also calculation time reduction
percentage of MRF-ACO-Gossiping method compared to
standard MRF 15 72.15% averagely. Therefore MRF-SA-
GA algorithm 1s the fastest method.

Fig. 2 represents a qualitative comparison
between these methods on some MRI scans
of TBSR. As it is observed in this figure, MRF-
SA-GA can yield more robust segmentation results
to noise.
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Original MRI STND-MRF MRF-SA-IGA MRF-ACO-Gossiping
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Fig. 2: Segmentation results of different methods
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CONCLUSION

In thus
evaluation of three proposed optimization methods in
Markov random field (MRF) model was presented.
In this study, classical MRF that uses sunulated
annealing, MRF-SA-IGA which uses a hybnd of
simulated annealing and improved genetic algorithm
and MRF-ACO-Gossiping which uses a hybrid of social
algorithm
gossiping algorithm was examined for segmenting the

paper, a comprehensive comparison

contains  ant colony optimization and
brain inte white matter and grey matter, vessel and
cerebrospinal fluid (CSF). Results indicated that the
MRF-SA-IGA approach outperforms two other methods
1n convergence speed and accuracy.
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