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INTRODUCTION

Surface representations are crucial to computer
graphics, numerical simulation and computational
geometry. Sampled representations, such as triangle
meshes, have long served as simple, but effective, smooth
surface approxmmations. The approximation of a smooth
surfaces from a sampled geometric model, whether explicit
or not, requires consistent notions of first-order and
second-order differential geometric attributes, such as
principal curvatures and principal directions. Typically,
differential geometric properties are derived from surface
vertices, mesh connectivity and, occasionally, by
considering externally specified vertex normals.

The study and use of developable surfaces has a
long Thistory. Developable surfaces natural
applications in many areas of engineering and
manufacturing. For mstance, an aircraft designer uses
them to design the airplane wings and a tinsmith uses
them to connect two tubes of different shapes with planar
segments of metal sheets. In computer graphics.

The aim of this paper is to study new special type
developable surface in terms of focal curve of biharmonic
curve in the Heisenberg group Heis’.

Let (M, k) and (M, g) be Riemannian manifolds.
Denote by R¥ and R the Riemannian curvature tensors of
N and M, respectively. We use the sign convention:

have

R, 1) =[Vys Vi — V. XY e T(IN).

For a smooth map ¢ : N - M, the Levi-Civita connection
¥V of (N, k) induces a comncetion V¢ on the pull-back
bundle

O'TM = ooy Ty

The section T(¢h): = trV¥d¢p is called the tension field
of ¢p. A map ¢ is said to be harmonic if its tension field
vanishes identically.

A smooth map ¢ N - A 1s said to be biharmomic if it
1s a critical point of the bienergy functional:

22(9)= [ S r@)f .

The Euler--Lagrange equation of the bienergy is
given by T,(¢p) = 0. Here the section T,(¢) is defined by
Ti(d) = - AT(P) + R(T(P), dp)dh. (1.1)

and called the bitension field of ¢ The operator A, is the
rough Laplacian acting on I'(¢p*7TA1) defined by

Where @) 18 a local orthonormal frame field of N

72
=1
Obviously, every harmonic map is biharmonic. Non-
harmonic biharmonic maps are called proper biharmonic
maps.

In this paper, we study new special type developable
surface in terms of focal curve of biharmonic curve in the
Heisenberg group Heis’. We construct parametric
equations of new special type developable surface.
Fmally, We show graphically the results obtained in main
theorem.
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Heisenberg Group Heis™: Heisenberg group Heis® can be
seen as the space R’ endowed with the following
multipilcation:

(;,;,;)(x, Vv.z)= (;+ x,;+ y,; +z- %Ey + %x})
(2.1)
Heis® is a three-dimensional, connected, simply

connected and 2-step nilpotent Lie group.
The Riemannian metric g is given by

g=dil+dy? 1+ (dzt %dxf ga’y)z.

The Lie algebra of Heis® has an orthonermal basis

c yo g x@ 0 (2.2)
21:7777522:7+77523: s
dx 23 dy 20z oz
for which we have the Lie products
[ei.e;] = e.[eze;] = [ese ] =0
with
gle,e) = glese;) = gle.e) = 1.
We obtain
Velel = Vg ey = VES e; = 0,
1
Velez *Vezel ek
1
VEIQS egel 5%
Veze3 = Ve3 e = Eel.
We adopt the following notation and sign

conventicn for Riemannian curvature operator on Heis’

defined by

RX NZ=N NV, Z+V, Ny Z+Vyy Z,
While the Riemanman curvature tensor is given by

RX, Y, Z, W)= g(RX, NZ, W)
Where X, ¥, Z, W are smooth vector fields on Heis®

The components {R,,} of R relative to {e, e, e.; are
defined by

g(R(eiaej)ekaef) - Rfjkf-
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The non-vanishing components of the above tensor

fields are

1
Ry = e Ry3p = 1 Ry = RS
1 1 1
Ryza Pk Ry33 RS Ryz3 = e
and
3 1
Ripts =~ Ryzys = Rasas = —.
1212 == Fasiz T R~ 23)

Biharmonic Curves in the Heisenberg Group Heis®: Tet
I be an open interval and y: I - Heis’ be a curve
parametrized by arc length on Heisenberg group Heis’.
Putting t = ¥', we can write the tension field of y as t(y)
=V ,. v’ and the biharmonic map equation (1.1) reduces to

Vit+ R(t, V)t = 0. (3.1

A successful key to study the geometry of a curve 1s
to use the Frenet frames along the curve, which is recalled
1n the following.

Let y: I -~ Heis’ be a curve on Heis’ parametrized by
arc length. Let {t, n,, n,} be the Frenet frame fields tangent
to Heis’ along y defined as follows: t is the unit vector
field ¥’ tangent to ¥, n, is the unit vector field in the
direction of V, t (normal to ¥) and b 13 chosen so that {t,
n,, n,} is a positively oriented orthonormal basis. Then,
we have the following Frenet formulas:

V.t =kt
V.1, = —Kt —Tn,, (3.2)
V.n, =t

Where k = [V;T| is the curvature of y and 7 is its torsion.
With respect to the orthonormal basis {ee,e;}, we can
write

t= tlel + [292 + f393,
“1:”1191+”12"12+”13923= ;
n, =txXn; =mye, +#ye, + e

Theorem 3.1: Lei v : [ - Heis’ be a non-geodesic curve on
Heis' parametrized by arc length. Then, v is a non-
geodesic biharmonic curve if and only if

K = constant = O,

1 ( 3
—— |7
4 v

A )2° (3.3)

1]

T =0.
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Developable Surfaces Associated with a Focal Curve of
Biharmonic Curve in Heisenberg Group Heis®: For a unit
speed curve ¥, the curve consisting of the centers of the
osculating spheres of ¥ 1s called the parametrized focal
curve of y. The hyperplanes normal to y at a pomnt consist
of the set of centers of all spheres tangent to ¥ at that
point. Hence the center of the osculating spheres at that
point lies in such a normal plane. Therefore, dencting the
focal curve by C,, we can write.

Cyls) = (y + ey + eny)(s) (4.1)
Where the coefficients ¢, ¢, are smooth functions of the
parameter of the curve ¥, called the first and second focal
curvatures of ¥, respectively. Further, the focal curvatures
¢, ¢, are defined by

1

K

e
A x=0120.
T

il

262 7 (4.2)
Lemma 4.1: Let y : I -~ Heis” be a unit speed biharmonic
curve and and C, its focal curve on Heis'. Then,

1
=—= tant and ¢, = 0.
q . constant and ¢, 43)

Proof: Using (3.3) and (4.2), we get (4.3).

Lemma 4.2: Let v : I - Heis’ be a unit speed biharmonic
curve and and C, its focal curve on Heis'. Then,
C.(s) = (y + eny)is) (4.4)
On the other hand, a ruled surface in Heis’ is (locally)

the map €, defined by

Q(y,@)(&”) =y + ud(s),

Where y : I -~ Heis’, 8 : T » Heis’ \{0} are smooth
mappings and / is an open interval or the unit circle S'.
We call the base curve and the director curve. The
straight lines # - ¥(s) + ud(s) are called rulings of Q,, ;.
We now consider a special type of ruled surface,
which has been studied for over a century, the
developable surface. Informally, these are surfaces which
can be attened onto a plane without distortion, so are a
transformation (e.g. folding or bending) of a plane in
Heis®. Tt is this fundamental property which has long
ensured their useful application in engineering and
manufacturing. More recently, their use has spread to the
computer sciences, in computer-aided design, their
1sometric properties make them ideal primitives for texture

mapping,.
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Definition 4.3: 4 smooth surface 6(7,’5) is called a

developable surface if its Gaussian curvature K vanishes
everywhere on the surface.

Definition 4.4: Ler v : I - Heis’ be a unit speed curve. We
define the following developable surface

Where C(5) is focal curve.

Theorem 4.5: Let v : I - Heis’ be a unit speed biharmonic
curve and and C, its focal curve on Heis’. Then, the
parametric equations of ), » are

x(cy,y') (su)= %Singo(cosqo — A)sin[As+ p]
+%sinqosin[iﬁs+ pl+usingcos[As + pl+ ay,
y(cy,y') (s.u)= f%sinq)(cosgo — Ajcos[As+ p]

1
——sin@cos| As+ p|+usin@sin[As + p|+ a5.
A : (4.5)

Z(Cy,y') (s.u)=(cos@+ ﬁginzqo)(s +u)

2

)

,ilsingo(cosq)f SF{)COS[Aer p][;qler ;q2}+ aq,
K

_c—lsinq)(cosq)— A)Sin[AS+ p][%%s-&- lq4
K

where p.g, ¢ gsq,a,0,0, are constants of integration

2
and 45 -4
P (cos ) .

2

Proof: The covariant derivative of the vector field t 1s:

Vtt = (1'1’ + 1213)91 + (3’2 - ?:11'3)92 + f:;es. (46)

Thus using Theorem 3.2, we have

t = (sin @ cos [As + ple, + sin @ sin[As + ple, + cosge,
(4.7

Where P r\}s (cosrp)2 -4

2
Using (2.2) in (4.3), we obtain

t = (sing@cos[As+ pl.singsin[As+ p],

cosQ— %y(s)sinqocos[[\s +pl+ %x(s)singosin[[\s +pD.
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From (2.2), we get

t=(zinpcog[As + pl.singsin[As + pl,cosp+ ﬁsinzgo).

(4.8)
From (4.6) and (4.7), we get

V.t = sin @(cosp— A)(sEn[As + ple; — cos[As + pley).

By the use of Frenet formulas, we get
1
n=—Vu
=gt 4.9)

= l[sin P[cosp— A)(sin[As + ple; — cos[As + pley ]
K
Substituting (2.2) in (4.9), we have

n = isinqo[cosqo— A)(sin[As + pl,~cos[As + p],

1 1 1 1
—gin[As + p]| —g+5+—qg4 |- cog[As + —gi5+— 1
[ 91{293 2@4] | 91(2@1 29‘2])

(4.10)

Where §1,52,54.G4, are constants of integration.

We substitute (4.8) and (4.10) into Definition 4.4, we
get (4.5). The proof is completed.

Using Mathematica in Theorem 4.5 for different
constant, vields

Fig. 3:
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