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Abstract: In this article, the space-time fractional Klein-Gordon equation of distributed order 1s mtroduced
and some aspects of particular cases of this equation such as symmetry and single order cases are expressed.

Also, using the Fourier, Laplace and Mellin mtegral transforms fundamental solutions of these equations are

obtained through the Fox H-functions.
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INTRODUCTION

The fractional differential operator of distributed
order

_ i qd” 1
DE Lb(ﬁ)dr—ﬁdﬁ, u>12056(8)>0 M
1s a generalization of the single order Dé?) - ﬁ which by

drP

considering a continuous or discrete distribution of
fractional derivative is obtained. The idea of fractional
derivative of distributed order was stated by Caputo [1]
and was developed by Caputo himself [2, 3]and Bagley
and Torvik [4] later. Other researchers used this 1dea and
appeared interesting reviews to describe the related
mathematical models of partial fractional differential
equation of distributed order.

For example Mainardi [5, 6], Chechkin et al. [7-9],
Umarov et al. [10], Kochubei [11], Sun et al. [12], Aghili
[13] investigated on some linear distributed-order
boundary value problems of form

jmb(ﬁ)Dﬁu(x, NdB = BiDwxt) D=2 1>0xcR
0 dx (2)

With pseudo-differential operator B(D)) and the
Cauchy conditions

ak
?u(x,0+)=fk(x) k=01, .m 1. (3)

In particular cases the characteristics of time-
fractional or space-time fractional diffusion equation of
distributed order were studied for treatises m the sub,
normal and super diffusions [14-16].

Now, in this paper in distributed-order equations
class in section 2 we introduce the space-time fractional
Klein-Gordon equation of distributed order in the
Riesz-Feller and Caputo
mathematical aspects and technical approaches to find
the explicit solutions of this equation. In this regard, we
choose the operational calculus scope to find the
fundamental solutions via the Fox H-functions.

senses and focus on

In thus sense, as a special case n section 3 we obtain
the solution of symmetric space-time fractional Klemn-
Gordon equation of distributed order. The Mellin
transform 1s the alternative tool to change the solution
into the Mellin-Barens integral and construction of the
Fox H-functions.

In section 4, as other special case we study the
space-time fractional wave equation of single order
and show the explicit solution via the Fox H-functions.
Finally, in section 5 the main conclusions are drawn
and for convenience appendices are included to our
notations of fractional calculus and introducing the
Fox H-function.
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The Space-Time Fractional Klein-Gordon Equation of
Distributed Order: The following equation is called the
space -time fractional
distributed order

Klem-Gordon equation of

J'lzb(ﬁ)[fo+u(x,z)]dﬁ — A DS ulx, )]+ d*u = qlx.1),

(1)
u(x,O) = f(x)a Uy (xao) = g(x)a‘ l‘lm u(xa ‘t) = 0:) (2)
z>0,x,c,deR,b(ﬁ)zo,Ilzb(B)dﬁ -1, (3)

With the order-density function b{f3) and the Cauchy
type imtial and boundary conditions. The parameters
@, 3,0 are the real and are restricted to

O<a<21<f<2 10 <min {a2 - o} (4

RF ot C : : :
and ' DF Déi are integrao-differential operators, the

Riesz-Feller space-fractional derivative order « and
asymmetry & and the Caputo time-fractional derivative of
order f3, respectively, see (A1), (A.3).

In order to solve the equation (?7), we extend the
approach by Naber [17] to find a general representation
of the fundamental solution related to a generic
order-density function b{f3). In this respect, by applying
the Laplace transform with respect to £ (A.2)

Now, by virtue
Bls)

functions ol S
SBs) + oK)

w(k,s) = and 4, (k,s) =

(k1) = —%J’D e "SG Uere™ ydr. j=1,2

P IO RRBA()

L{,chJru(x, st = sPiitx, ) — 57 e, 0N - P (0, 07), seC

(5)
and the Fourier transform of the Riesz-Feller fractional
derivative with respect to x (A.4)

Fiu(x,0).k = f IR D, D] =~y S (ki n), k<R

(sign{i))o = 6
wik ke T2 ©

We obtain

(j'zb(ﬁ)sﬁdﬁ)ﬁ(k,s)f (rb(ﬁ)sﬁ*ldﬁ)]?(k)7(Izb(ﬁ)sﬁ’2dﬁ)
1 1 1

Gy + Pya Uik, s)

+d ik, s) = §(k.s)

From which

2 2
i Bis)— a Bis)— d—z
i, 5) = ————S— F(f)+
S(B(s)+wq (k) SHB) Ty k)
O T é(k’s)a
P (B()+ WA kY) o

Where F(k),G(k) is the Fourier transform of the
functions flx),g(x) respectively and

B(s)= %[J'fb(ﬁ)sﬂ dB+d?. (8)

of Bobylev-Cercignam theorem for mversion of the Laplace transform [18] of the

L , we have the following

&)

In order to simplify the above relation (?7), we need to evaluate the imaginary part of the functions _; (k,ré™)
Flt2

along the ray 5 = ré”, r > 0 where the branch cut of the function 5” is defined. In this regard, by writing

p=pir)=|Bore™)
Bi(ré™ )= poosyr +ipsinyn, 1
y=ylr= Earg[B(rem)]

evaluating the imaginary part of the functions _ﬁj

o .
3 - B(S) 5 } — Kl(ﬂ, k, r) — - 5 V;a(k)pemn(ﬂ’}’) 5 n= 1,2
S (B(s)+ & (k) (Y wl ey + 2w d tp costmyy + p%)
~ 1 _ _ —psin(ry) _
Jf————— =K, nkr)= n=0,1,2
S Byl ()l () + 295 ()p cos(ry) + pP)
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and substituting in the relation (77), one leads to the
following form

2

d—sz(l,k,r)]dr
¢

Gt = —@J‘:J” KLk —

o0 2
G J‘ 4 e i
T

—rt
e [Ki(2.kr)——
ERCCYDES

1 J'OO —n
——| e
et w0

Where *,1s the convolution of the Laplace transform.
Also  through the mversion of the
function @(k.f) , we can write the explicit solution u(x,?)

[4Ck.1)™; K(0, k. r))dr, (10)

Fourter

with respect to Green functions in the following form
wen) = [ @G -Enas- [ @Gy x-Enag -
[laemeee-ga-man,

Where the Green functions are denoted as

1 PR | d2
Gl(x,_z);%_[oe FUR Lk~ 5 KoLk )
c

w 2
G, (x,1) = 7Lj T FT K (2, ) - d—K2 (2.k,7))dr
27Tx J0 2
[£a)
Glxt) = 7LJ' e TF KL (0.k, 1)]drdE, (11)
et 0
In special cases the Fourier inversions
FUK()x] = ij’ P Kk (12)
2m =

can be evaluated in terms of real and imaginary parts of
the kernel K(k)

FUK (k)] = ljmcos(;oc)m(K Gk + -
T Y0 T

j: sin (e )S(K (k) dk. (13)

The next section shows some siunplifications of the
relation (?7).

The Symmetric Space-Time Fractional Klein-Gordon
Equation of Distributed Order: For & = 0 we have a
symmetric operator with respect to x, that can be
interpreted as

o

2 2 =
o Tor, k=2

xDﬂi(_)z

In this case we get the symmetric space-time
Jfractional Klein-Gordon equation of distributed order
which since the function w#(k,z)

inversion of the relation (??) takes the form

1s even m k the

(1) = ljmcos(kx)ﬁ*(k, £k,
]

2

N e K LU N

2

S RO TN S VRS

1 o,
—q(xe,0)%, *X{E-‘.Oe K, (O, r)]dr}, (1)

Where *, 1s the convelution of the Fourier transform.
To calculate the Fourier mtegral we use the Mellin
transform

M (x5t = F(s) = _"wa Fldx, o <R(s) <o
Fla) = %J‘ “Fls)xds, ¢ - Ris), (2)

With convolution theorem which implies that

Ma(@) B0} =M[ )M = awBs). O
0 n N

By identifying the Fourier cosine integral i (?7)
as the Mellin convolution in & and setting

>

1 1 1
all,y=1"(k,1), b{k,x)=——cos(—), E=-n=k
(k.n)=u (kz1), bkx) —_ (k) g o
the explicit solution u(x.f) can be written as the Mellin

inversion formula of product 4(s,H)B(s.x) namely

w(x.t)= —%J‘ A(s NB(s,x)x *ds, (4

Where B(sx) can be obtained from the Handbook
by Erdelyi et al. [19, pp: 319] as follows

T(1-s)

0<R(s)<1. (5)
-2y
2 2

B(s,.x)=
For the required Mellin Transform of A(s,?)

A5 1) = j:u (e, Dk Lk

Which depend on the terms in brackets in (??)
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@ . 2 .
J‘ 5 pSIH(ﬁ?’) + dz > pSlH(W) 5 ]ks_ldk}df"
0 (KX 12k poos(my)+ p2) eF (P + k% pcos(my)+ p7)

w —7 @ (oSS 2 .
+j QT lJ‘ 5 k pSIH(ﬁ?/) 5 _ dz 5 pSIH(ﬁ’)’) 5 ]kS—ldk}dr

0 g T L 28 poos(my)+ pTy o (k7% + 2K% peos(my )+ pt)
+—j el ot sin(zy) Ly dr.

e 0 (k™% 1 2k%peos(my) + p*)

We use change variable &% = py and apply the the following integral [19, pp: 309]

1 sin(7y) 1y sn-Dmy) AT
w0 % 4 2ypoos(my)+1 sin(ms) Lly(s—1I(1-y(s—1))

¥l < 1,0 <R(s) <2 (7)

to sumplify the relation (?7?) mnto

1
P T T @)+ (- - @)+ 3)

o g7t
Als.1) = j() — s 1 s 1
d “ F(Y(E —(a+ E) + 2001 - ?’(a — (o + E) +2)

1 1 1
7 pi—“‘“g)ﬂ I o+ D)+ 1= (ot =+ 20
d o o o o Vi

cz o 8 1 5 1
F(?’(—— (e + E) + 10 - Y(E — o+ E) +1))

e g Yeara - S ar yeay
[4 o o [4

o0
e
+j - il
0 pt o

——(CH M (g 2= (o (o4 2)
o o o o

Ly o+ é) -y (e é) +2))

— 1 1 Yy
¢ @ Ty e ) ITA - ()4 1)
o o o o

St T @ Dy ara-C o Dt
[£1 [£1 [£1 [£1

C P
7.“02 { o K} 1 K 1 ydr.
Piyi—-(e+—=1+ DIl -y—-(o+ =)+ 1))
[#4 o [#4 o

(6)

Fmally, by substituting (?7) m to{??) we can write the selution #(x,#) with respect to Green functions in the following

form

uten)= [ fEG -t~ | @G e ~ [ MG L -mian,

Where the Green functions are denoted as

w 7 o L
Gimn= [T ¥y Ty oy,
anxdo ¥ x ol x
G~ —— " [H(‘/_ 72
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Gla )= — J‘ZJ‘: -t 1H (‘/_)d JE, (®)

OUL'CZ -

and the functions H(J_ ) and g ('\/_ ) are expressed in terms of Fox H-function shown in Appendix (B.1)

@2 L@ Loy Ll
o o o o 2

1
a (o) a
H(@)TCP o HZ,I ‘\/;

1 1 1 1
2P g = -2, 2y + —+ 2y + 1, 0501,2)
i o o o o 2

@+ -1 s L -y 1. Ln D)
o o o o 2

1
i (o\s/_ (o)

y=mp % Hy

]
[

@+ o1 Y Loy Ly h
o « o < 2

provided that the integrals on the right-hand side of (?77) are convergent.

The Space-Time Fractional Wave Equation of Single Order: In this case by setting 5(8) =8 —n), 1 <n<2,d = 0the
equation (77) 1s converted to space-time fractional wave equation of single order #,

£ D)~ [ D ux.0) = glx.1) (1
So that
B(s)—c s p= p(f)—— Y =n.

Also, the transformed equation ﬁ(k: 5) (7). takes the form

R Sn—l Sn—z = k s
ik, )= Fiy+ atkys 1) @
5" +—l,ua(k) 5" +—l,ua(k) 5" +—1;ra(k)
S!’l*m
Since, the inverse Laplace transform of 1 ... 11 (?7) can be easily obtained as the Mittag-Leffler functions
s+ 71;105 (%)
of order » [20]
s 1
L3 =" B - v o)
1 e
)

the remaining solution with respect to Fourier inversion can be written as follows

)= 1% 5[ I Sulore
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T AT S
o c
wox L [P 10 —ikx (3)
+q(x, 0%, t—znj_w[t EL( 7c2 v, (M e P dk

Where *_*, 13 the convolutions of the Fourier and Laplace transforms respectively. To calculate the above mtegrals
by writing Fourier kernel in real and imaginary part according to (77)

u(e )= % [ [ oo RE, (N + [ sin(o)SCE (5w (R )k
0 ¢ Tdo ¢
+2 0% [ ot BBy wd itk + L[ sinoS(E, ek
T 40 o T 40 o

b, [ oo R~y L it + [ sinle) S, ]

and changing it in the Mellin convolution (?7) similar to pervious section by knowing that [21]

M —
bk x)= LCOS(l),%B(S, x)= 1ﬁ(lis)sin(ﬁ) 0<SR(s)<1,
mhx  k X 2
M —
bk, x)= LSin(l),%B(s, x)= MCOS(E) 0 <3R(s) < 2,
mkx  k 2
g mae TOITAS T R
a(k,z)—Em(f—zk el ), >A(sx)=— e 70
c “ a7
o

We can finally get the explicit solution #(x,f) with respect to the Green function m terms of the Mellin-Barnes integral
as follows

uten)= [ @G- Endz 1| g@GteE0d - [ a6 Er-mn,

Where the Green function 1s given by

| perin TETA- T 5)
o o

1 ST g1
Gern=——— t—sinl (o Y Y ds
CIFEX 27T do—ie (- o c X ()
o
§ §
{1 — =) I(1-5) n
1 1 poti= . ST g1
Glen=————| O ——sin (o -~ ) ds
QX LRl do—iw 1—‘(1_7) (44 ¢ X
o
§ §
N 1 1 J-chiw F(E)F(I—E)F(l—s) (l)Sds
ox 27f Jo—iw o:" 01" x
roc_c_2 (1 v ra-2
(5 S-S T(1- ) )
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Also, depend on the variations of parameters @, the reduced Green function can be shown as Fox H-function in
the following form

ai@z”
1 2
(0,—):(0,13:(0,——)
a 20
aiez”
1 1 1 z
cen-Lm? Lolyolyo—=y a<p
ax 7| x o a 20
_8"
1 2
atyalya <y
o o 20
a:"
1 12 1 c*
Gla,t)=—Hyy | —| (L, —n(L (1, Y|, a=p
ox 7 o 2o

(6)

When 1 < & = <2 the corresponding H-function 1s singular in x = 1 and its singularity 1s removable. In this case
representation of the Green function is written as the following elementary function [6]

M
. sin[% (ar — QLZ)]
Glx,1) = e

: ™
1+ 24" cos[% (o — 9%)]+ 2
CONCLUSIONS
It may be concluded that on the basis of integral transform methods we developed analytical procedure for finding
general solution of the linear space-time fractional Klein-Gordon equation of distributed order.
In special cases the Mellin transform is a supplementary tool to write the transformed equations in Mellin-Barens

mtegrals and writing the Fox H-fimetions as the proper and well-suited functions m solutions of these equations.
Appendix A

For the well-behaved function f{1), £ 0 the so-called fractional derivative of order > 0 in the Caputo sense is
defined as the operator rc Dﬁ+ such that
0

Cpb gy L fMear
T T gyl g MTITA A

m

and 1n special case € ym _d
P P D0+f(f) *dr—mf(F)-
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The most important use of the Caputo fractional derivative is treated in initial-value problems where initial conditions
are expressed in terms of integer-order derivatives. In this respect, it is interesting to know the Laplace transform of this
type of derivative according to

m—1

L{SD? Fit)st=sPF(s) - Zsﬁ‘l‘f‘ FEOTY, m-o1<B<m(A2)
=0

Where

F)=Lif(rs=[ ¢ "foyd, seC.

For the well-behaved function flx), x € R, the Riesz-Feller fractional derivative of order & and skewness @ is
defined by

I'(1+a)

RF - _
x D@ B
a

[sin(%(oc+9)) TS SE) e sin(%(a—9))_[:7f(x*§)*f(§) JETA3)

0 glﬂx 1+or

and 1n secial case

RF 1 _
2 D=2t
Also, for the Riesz-Feller fractional derivative of order it 1s interesting to know the Fourier transform of it namely

R o i{sign(ineZ
L Dy flakkt=—|k|" e Rk, keR(AM4)

Where

i = [ & po

For further reading on the theory of fractional calculus, the interested reader is referred to [20, 21].
Appendix B

The Fox H-function is a generalized hypergeometric function defined by means of Mellin-Barens type contour
integral as follows

(aj'"ij)lp
1
A _ prmn g | _ BLH g
Hym(z)=Hyw | 2| (b, By ) i LHP’q (s)z%ds z# 0(B.1)

Where the integrand H has the form in terms of the Gamma functions

A(s)B(s)

Hoa = i)

A(s)= ﬁr(bk —B,s5).B(s)= ﬁr(l —a;+ AJ,-S)

k=1 J=1

Cls)= ﬁ [(1-4; + Bys),D(s) = ﬁ r(aj - AJ_S)

F=m+1 J=n+l
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and the orders (s2,1,p,¢) are non-negative integers such that 1 <m < ¢, 0 < n < p, the parameters 4, 0, B, > O are positive

and «,b; can be arbitrary complex such that the poles of the Gamma function entering the expressions A(s), B(s) are
simple poles and do not coincide 1.e.

Ay + D) # Bela, — 1~ 11 =0,1,2,

Remark: In the presence of a multiple pole 5; of order # we need to expand the power series of the involved functions

at the pole and evaluate the coefficient of the term

as the residue. In this case the expansions of 7 and Gamma
58
0

functions have the forms
25 =20 [1+1ogz(s—sp)+ O((sto)z)] 5= 5
L) =T (s 1+ (s s — 50+ O(5 - 50)2)] 8§ — 508,72 0,-1,-2,...

3
Fis)=— Y

s sr ol TV st Ol A7), s> —hk =012,

Where i/(z) is the logarithmic derivative of the Gamma function ;)= Iz )_
['(z)

Also, the contour I. can be chosen as follows

L={y—iwn,y+ion),yeR 13 a contour starting at the point y — 7 and terminating at the point ¥ + 7 and leaving to the
right all the poles of A(s) and to the left all the poles of B(s).

L., is a loop beginning and ending at + < and encircling once in the negative direction all the poles of A4(s), but none
of the poles of B(s).

L_y is a loop beginning and ending at — and encircling once in the negative direction all the poles of B(s), but none
of the poles of A(s).

Furthermore, depend on the followmng parameters
P g g P

p=TT4 “T[B0=38-34

J=1 =1 #=1 =1

q P PIPRN. P " q
=D b+ S =D A= D 44D B~ D B
J=1

=1 7=l F=ntl E=1 F=m+1

the choices of the contour L and convergence domains for analytic function / can be found. For more details about this

functions such as convergency, analytic continuation and their application in applied sciences the reader 1s referred to
[22-26].
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