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Numerical Study for Solving Quadratic Riccati Differential Equations
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Abstract: There has been greater attempt to solving differential equations by numerical methods. Most of
authors treated numerical approach to solve nonlinear Riccati differential equation (RDE). Numerical Laplace
transform method is applied to approximate the solution of nonlinear quadratic Riccati differential equations
mingled with Adomian decomposition method. A new technique is given by Vinod M and Dimple R by
reintroducing the unknown function in Adomian polynomial with that of well-known Newton-Raphson formula.
Recent. N IDE studied this problem to solve nonlinear Riccati differential equation by numerical method using
of Newton’s interpolation and Aitken's method as a hybrid technique by using these two types of interpolation,
some examples in which comparisons are made among the Numerical Laplace transform method, exact solutions,
ADM (Adomian decomposition method), HPM (Homotopy perturbation method), Taylor series method and
the method Proposed by Vinod M and Dimple R, we compared also the result for some examples with exact
solution, variational iteration method (VIM) and multistage variational method (MVIM). We found that using
this method is not generally good, as for (VIM) and (MVIM) methods and this method can be improved by
taking a small step h for the solution interval and obtaining the approximation relationship, then using it in a
limited number of first points of the solution interval.

Key words: Quadratic Riccati differential equation  Numerical method  Newton's interpolation and Aitken's
method  Variational iteration method  Multistage variational iteration method

INTRODUCTION LTDM in solving RDE in [9]. In [10] the authors

Conceder the nonlinear Riccati differential equation MVIM, HPM, MHPM and HAM to solve the general
(RDE) of the form [1]: RDE. Laplace transform is a powerful tool in  solving

problems. A well-known numerical algorithm Laplace
(1) transforms and Adomian decomposition method has

where q(x), r(x) and p(x) are the known scalar functions nonlinear problems which provides a series solution.
and a is an arbitrary constant. This equation named after Suheil A. Khuri was the first to apply Laplace
the name of Italian nobleman Count Jacopo Francesco decomposition algorithm to solve a class of nonlinear
Riccati(1676-1754) [1-4]. The applications of this equation differential equation [11]. A combined Laplace Adomian
may be found in some kinds of applied sciences. In [1-3], decomposition method is used to solve nonlinear Volterra
N IDE applied numerical method to solve the RDE, In [5] integral equation with weakly kernel [12]. In [13], Majid
Ghorbani and Momani applied the piecewise variational Khan et. al. solved nonlinear coupled partial differential
iteration method (VIM) to solve the RDE. Differential equations with the help of Laplace Decomposition
transform method [6] is adopted to find the solution of method. LDM is also implemented to obtain the series
RDE. Taiwo and Osilagun [7] approximated the  solution solution of nonlinear fractional differential equations [14].
of RDE by Iterative algorithm. Perturbation iteration Waleed Al-Hyani [15] solved nth order Integro differential
algorithm (PIA) has been presented in solving RDE [8]. equations by the usage of LT-ADM. In [16], Modified
Vahidi has made the comparison among HPM, ADM and Laplace decomposition method is proposed for solving

developed the iterative methods ADM, MADM, VIM,

linear problems but it is incapable of solving nonlinear

conquered much importance in solving many linear and
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Lane-Emden type differential equation. LDM is exercised differential equation using numerical Newton's
to solve the Logistic differential equations in [17]. interpolation and Lagrange method by combined the
Wazwaz [18] employed CLT-ADM for solving nonlinear newton’s interpolation and Lagrange method, In this
volterra-integro differential equations. For handling the study we will combine of Newton’s interpolation and
solutions of nonlinear system of partial differential Aitken's  method   instead   of   Lagrange   method to
equation Laplace decomposition method and pade solve RDE, [31-34]. Finally we verified on a number of
approximant is used in [19]. Hence this method is utilized examples and numerical results obtained show the
to solve many more problems like Singular initial value efficiency of the method given by present study in
problems  [20],  Double  singular  boundary value comparison with Vinod M, Dimple R [4] and with Belal
problems  [21],  Higher order boundary value problems Batiha [35].
[22]. Other cited references are [23-29]. In Vinod M and
Dimple R. [1] uses the Laplace transform-Adomian Combined newton’s interpolation andLagrange Method
decomposition  method  to  solve the Quadratic RDE. [30-34]: This study combine Newton’s interpolation
They replace the unknown function y in Adomian method and Lagrange method it used newton’si

polynomial with Newton-Raphson formula, which interpolation method to find the second two terms then
improves the Adomian polynomial. Faith Chelimo Kosgei use the three values for y to form a quadratic equation
[30]  studied   the   problem   of   solution   of    first   order using Lagrange interpolation method as follows;

Newton’s Interpolation Method:

(2)

where

(3)

Etc

Lagrang Interpolation Method:

(4)

Description of the Proposed Method: This method will combine a Newton’s interpolation method and Aitken method.
It used newton’s interpolation method to find the second two terms then use the three values for y to form a linear or
quadratic equations using Aitken interpolation method as follows;

(5)

where

(6)

etc
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(7)

(8)

Aitken Interpolation Method:

(9)

(10)

(11)

Examples: We will check the effectiveness of the present technique (3). First numerical comparison for the following test
examples taken in [1].

Example 1: Solve 

By taking the step h = 0.01, which has the exact solution as: y = tan (x).
First by using Newton's interpolation, we have

Now, forming linear and quadratic using Aitken Method

P (x) = x0,1

P (x) = 1.00005xx0,2

P (x) = 0.005x  + 0.99995x0,1,2
2

Hence, we can take the approximation solution of linear and quadratic using Aitken Method, if we take quadratic
using Aitken Method, we find the same solution givenby Vinod M, Dimple R [4], Table 1.

Example 2: Solve 

By taking the step h=0.01, which has the exact solution as: 

First by using Newton's interpolation, we have



dy 21 + y ( ),  (0) = 0
dx

x y
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Table 1: Solution of 

x Combined Newton's Interpolation and Aitken Vinod M and Dimple R method s
0 0 0 0
0.01 0.010000000 0.010000083 0.010000333
0.02 0.020001000 0.020000667 0.020002667
0.03 0.030003000 0.03000225 0.030009003
0.04 0.040006000 0.040005334 0.040021347
0.05 0.050010000 0.050010419 0.050041708
0.06 0.060015000 0.060018006 0.060072104
0.07 0.070021000 0.070028597 0.070114558
0.08 0.080028000 0.080042694 0.080171105
0.09 0.090036000 0.090060799 0.090243790
0.1 0.100045000 0.100083417 0.100334672

Table 2: Solution of 

x Combined Newton's Interpolation and Aitken Vinod M and Dimple R method s
0 0 0 0.0000000E+00
0.01 0.010000000 0.009999917 2.4998750E-07
0.02 0.020001000 0.019999333 1.9996001E-06
0.03 0.030003000 0.02999775 6.7469637E-06
0.04 0.040006000 0.039994668 1.5987209E-05
0.05 0.050010000 0.049989586 3.1210979E-05
0.06 0.060015000 0.059982006 5.3902948E-05
0.07 0.070021000 0.069971431 8.5540349E-05
0.08 0.080028000 0.079957361 1.2759151E-04
0.09 0.090036000 0.089939299 1.8151442E-04
0.1 0.100045000 0.09991675 2.4875529E-04

Now, forming linear and quadratic using Aitken Method

P (x) = x0,1

P (x) = 1.00005xx0,2

P (x) = 0.005x  + 0.99995x0,1,2
2

Hence, we can take the approximation solution of linear and quadratic using Aitken Method, if we take quadratic
using Aitken Method, we find the same solution given by Vinod M, Dimple R [4], Table 2.

Example 3: Solve 

By taking the step h = 0.01

First by using Newton's interpolation, we have



dy 21 y ( ) + 2 ( ),  (0) = 0
dx

x y x y 

2dy 1 y ( ) + 2 ( ),  (0) = 0,  [0, 20]
dx

x y x y x 

1 2 1( ) 1 2 tanh ( 2 log )
2 2 1

y x x
         

1 0
0 0 1 0,0

1 0

( ) ( )0 ,  [ ] 1
( )

f x f x dya y a
x x dx


    


2,2 0,0
1 2 2

[ ] [ ]
0 1.(2 0) 2,  0,  0 1(2 0) 2

2 0

dy dy
dx dxy a y


         



Middle-East J. Sci. Res., 28 (4): 348-356, 2020

352

Table 3: Solution of 

Combined Newton's Vinod M and
x Interpolation and Aitken Dimple R method Taylor Series method ADM HPM
0 0 0 0 0 0
0.01 0.010000000 0.010100585 0.010100330 0.010100330 0.010100330
0.02 0.020199000 0.020404690 0.020402612 0.020402612 0.020402612
0.03 0.030597000 0.030915863 0.030908719 0.030908719 0.030908719
0.04 0.041194000 0.041637666 0.041620432 0.041620431 0.041620432
0.05 0.051990000 0.052573672 0.052539435 0.052539435 0.052539435
0.06 0.062985000 0.063727448 0.063667310 0.063667309 0.063667310
0.07 0.074179000 0.075102547 0.075005529 0.075005526 0.075005529
0.08 0.085572000 0.086702496 0.086555447 0.086555443 0.086555447
0.09 0.097164000 0.098530785 0.098318300 0.098318293 0.098318300
0.1 0.108955000 0.110590857 0.110295195 0.110295185 0.110295195

Now, forming linear and quadratic using Aitken Method

P (x) = x0,1

P (x) = 1.00995xx0,2

P (x) = 0.995x  + 0.99005x0,1,2
2

Hence, we can take the approximation solution of linear and quadratic using Aitken Method, if we take quadratic
using Aitken Method, we find the same solution given by Vinod M, Dimple R [4], Table 3.

Example 4: Solve 

The exact solution is [35]

By taking the step h = 2 and by using Newton's interpolation, we have

Now, forming linear and quadratic using Aitken Method

P (x) = x0,1

P (x) = 0.5x0,2

P (x) = –0.25x  + 1.5x0,1,2
2
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Table 4: Solution of 

x Exact solution 2-Iterate MVIM 3-Iterate VIM Combined Newton's Interpolation and Aitken for h=2

2 2.3577716530 2.3592420980 -286352.73097900 2.0000000000
4 2.4140123820 2.4140330560 -9.0657980428E19 2.0000000000
6 2.4142128590 2.4142130890 -7.3332282199E33 -3.000000000
8 2.4142135600 2.4142136400 -5.7930892793E47 -4.000000000
10 2.4142135620 2.4142136400 -4.5744317440E61 -10.00000000
12 2.4142135620 2.4142136400 -3.6121072512E75 -18.00000000
14 2.4142135620 2.4142136560 -2.8522268182E89 -28.00000000
16 2.4142135620 2.4142136940 -2.2522027269E103 -40.00000000
18 2.4142135620 2.4142136830 -1.7784059425E117 -54.00000000

Hence, we can take the approximation solution of quadratic using Aitken Method, we find the solution given by
Table 4. It is very far from the exact solution and also far from the solution given by the (VIM) method [35].

To solve this problem, for some points only, Belal B. [35] took the step h = 0.2 in VIM method. by the Hybrid method
taking h small, h = 0.2 we can see the solution.

First by using Newton's interpolation, we have

Now, forming linear and quadratic using Hybrid Method

P (x) = x0,1

P (x) = 1.18x0,2

P (x) = 0.9x  + 0.82x0,1,2
2

Hence, we can take the approximation solution of quadratic using Hybrid Method, we find the solution given by
Table 2. It is also far from the exact solution and also far from the solution given by the (VIM) method [35]. Finally by
taking the step h=0.01, we have the following linear and quadratic using Hybrid Method



dy 21 ( ) + 2 ( ),  (0) = 0,   [0, 2]
dx

y x y x y x 

Middle-East J. Sci. Res., 28 (4): 348-356, 2020

354

Table 5: Solution of 

Combined Newton's Interpolation Combined Newton's Interpolation

x Exact solution 2-Iterate MVIM 3-Iterate VIM and Aitken for h=0.2 and Aitken for h=0.01

0.2 0.2419767992 0.2396149017 0.2419778327 0.200000000 0.237810000

0.4 0.5678121656 0.5626231618 0.5678455132 0.472000000 0.555220000

0.6 0.9535662155 0.9468409011 0.9536660329 0.816000000 0.952230000

0.8 1.3463636550 1.3405640980 1.3463791062 1.232000000 1.428840000

1.0 1.6894983900 1.6863821450 1.6860271032 1.720000000 1.985050000

1.2 1.9513601180 1.9509491870 1.9150510260 2.280000000 2.620860000

1.4 2.1313266100 2.1325827440 2.1791315021 2.912000000 3.336270000

1.6 2.2462859590 2.2481414290 -50.98229780 3.616000000 4.131280000

1.8 2.3163247370 2.3181237490 -5338.782860 4.392000000 5.005890000

2.0 2.3577716530 2.3592420980 -286352.7325 5.240000000 7.940200000

Now, forming linear and quadratic using Aitken Method REFERENCES

P (x) = x0,1

P (x) = 1.00995x0,2

P (x) = 0.995x  + 0.99005x0,1,2
2

Now let's use this approximation to get the solution
for x=0.2, 0,4, 0.6,….

We find the results in Table 5. Which shows us a
significant improvement in the solution, but not in all
points, only in the first three points and therefore it can be
considered useful to get the solution in these three points
only.

CONCLUSIONS

In this work, we have been solve the Riccati
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method (VIM) and multistage variational method (MVIM),
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generally effective, not stable and this method can be
improved by minimizing the step h for the solution interval
and obtaining the approximation relationship, then using
it in a limited number of first points of the solution
interval.
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