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Comparison of Newton-Raphson Based Modified Laplace Adomian
Decomposition Method and Newton's Interpolation and

Aitken's Method for Solving Quadratic Riccati Differential Equations

Nasr Al-Din IDE

Department of Mathematics, Faculty of Science, Aleppo University, Syria

Abstract: There has been greater attempt to solving differential equations by analytic methods and numerical
methods. Most of authors treated numerical approach to solve first order ordinary differential equations,
specially nonlinear Riccati differential equation (RDE). Numerical Laplace transform method is applied to
approximate the solution of nonlinear (quadratic) Riccati differential equations mingled with Adomian
decomposition method. A new technique is given by Vinod M and Dimple R by reintroducing the unknown
function in Adomian polynomial with that of well-known Newton-Raphson formula. In this paper we will study
this problem by using of Newton’s interpolation and Aitken's method as a hybrid technique by using these two
types of interpolation to solve nonlinear Riccati differential equation, some examples in which comparisons are
made among the Numerical Laplace transform method, exact solutions, ADM (Adomian decomposition method),
HPM (Homotopy perturbation method), Taylor series method and the method Proposed by Vinod M and
Dimple R.

Key words: Riccati differential equation  Analytic method  Numerical method  Newton’s interpolation
method  Aitken's method

INTRODUCTION elementary functions [2, 3]. In some control theory

Most significant classes of nonlinear differential Markovian jumps and stochastic controls RDEs act
equation  is Riccati  differential equation (RDE) of  the predominantly [3, 4]. Apart from these applications RDEs
form [1]: is also used in stochastic realization theory, robust

(1) financial mathematics [2]. Much attention has been given

where q(x), r(x) and p(x) are the known scalar functions applications. Certain methods are there in literature to
and  a is  an  arbitrary  constant. This equation named solve the RDEs. In [5], Ghorbani and Momani applied the
after the name of Italian nobleman Count Jacopo piecewise variational iteration method (VIM) to solve the
Francesco Riccati (1676-1754) [1, 2]. The applications of RDEs. Differential transform method [2, 6] is adopted to
this equation may be found not only in random processes, find the solution of RDEs. Taiwo and Osilagun [7]
optimal control and diffusion problems, but also in approximated the solution of RDEs by Iterative algorithm.
stochastic realization theory, optimal control, robust Perturbation iteration algorithm (PIA) has been presented
stabilization, network synthesis and financial in solving RDEs [8]. Vahidi has made the comparison
mathematics. In the field of applied science and among  HPM,  ADM and LTDM in solving RDEs in [9].
engineering   the   RDEs  have played   an  important role, For solving these kinds of equations Yang, et al. [3]
A one dimensional static Schrodinger equation is closely employed the hybrid functions and Tau method. In [10]
related to RDEs. Satisfying projective Riccati equations, the authors developed the iterative methods ADM,
solitary wave solutions of nonlinear partial differential MADM, VIM, MVIM, HPM, MHPM and HAM to solve
equations can be expressed as polynomials in two the general RDE. Laplace transform is a powerful tool in

problems such as dynamic games, linear system with

stabilization and network synthesis and presently in

to solve these kinds of equations due to the above
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solving linear problems but it is incapable of solving Newton’s interpolation method [30-34].
nonlinear problems. A well-known numerical algorithm
Laplacetrans forms and Adomian decomposition method f  (x) = a  + a  (x – x ) + a  (x – x ) (x – x ) + ... + a  (x – x )
has conquered much importance in solving many linear (x – x )...a (x – x )
and nonlinear problems which provides a series solution. (2)
Suheil A. Khuri was the first to apply Laplace where,
decomposition algorithm to solve a class of nonlinear
differential equation [11]. A combined Laplace Adomian
decomposition method is used to solve nonlinear Volterra
integral equation with weakly kernel [12]. In [13], Majid
Khan, et al. solved nonlinear coupled partial differential (3)
equations with the help of Laplace Decomposition etc,
method. LDM is also implemented to obtain the series
solution of nonlinear fractional differential equations [14]. Lagrang interpolation method [30, 34].
Waleed Al-Hyani [15] solved nth order Integro differential
equations by the usage of LT-ADM. In [16], Modified
Laplace decomposition method is proposed for solving
Lane-Emden type differential equation. LDM is exercised
to solve the Logistic differential equations in [17]. (4)
Wazwaz [18] employed CLT-ADM for solving nonlinear
volterra-integro differential equations. For handling the Description of the Method: This method will combine
solutions of  nonlinear system of partial differential both Newton’s interpolation method and Aitken method.
equation Laplace  decomposition  method  and  pade It used newton’s interpolation method to find the second
approximant is used in [19]. Hence this method is utilized two terms then use the three values for y to form a linear
to solve many more problems like Singular initial value or quadratic equations using Aitken interpolation method
problems [20], Double singular boundary value problems as follows;
[21], Higher order boundary value problems [22]. Other
cited references  are  [23-29].  In  Vinod M and Dimple R. f  (x) = a  + a  (x – x ) + a  (x – x ) (x – x ) + ... + a  (x – x )
[1] uses the Laplace transform-Adomian decomposition (x – x )...a (x – x )
method to solve the Quadratic RDEs. They replace the (5)
unknown  function y  in Adomian polynomial withi

Newton-Raphson formula, which improves the Adomian where,
polynomial. Faith Chelimo Kosgei [30] studied the
problem of solution of first order differential equation
using numerical Newton's interpolation and Lagrange
method by combined the newton’s interpolation and (6)
Lagrange method, In this study we will combine of
Newton’s interpolation and Aitken's method instead of etc
Lagrange method to solve RDE, [31-34]. Finally we
verified  on  a  number  of  examples   and  numerical y  = a  + a  (x – x ) (7)
results obtained show the efficiency of the method given
by present study in comparison with Vinod M, Dimple R y  = a  + a  (x – x ) + a  (x – x ) (x – x ) (8)
[1].

Combined  Newton’s  Interpolation  and  Lagrange Formula instead of Newton's divided Interpolation method
Method [30]: This study combine both Newton’s in (2.1).
interpolation method and Lagrange method. It used
newton’s  interpolation  method  to   find   the  second Aitken interpolation method [33].
two  terms then use the three values for to form a
quadratic equation using Lagrange interpolation method
as follows; (9)

n 0 1 0 2 0 1 n 0

1 2 –1

n 0 1 0 2 0 1 n 0

1 2 –1

1 0 1 0

2 0 1 0 2 0 1

Note: We can use Newton's Forward Interpolation
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First by using Newton's interpolation, we have,
(10)

(11)

Examples: In this section, we will check the effectiveness
of the present technique (3). First numerical comparison Now, forming linear and quadratic using Aitken Method
for the following test examples taken in [1].

Example 1:

Solve

By taking the step h=0.01, which has the exact linear and quadratic using Aitken Method, if we take
solution as: y = tan(x). quadratic using Aitken Method, we find the same solution

First by using Newton's interpolation, we have,

Now, forming linear and quadratic using Aitken Method

Hence, we can take the approximation solution of Now, forming linear and quadratic using Aitken
linear and quadratic using Aitken Method, if we take Method
quadratic using Aitken Method, we find the same solution
given by Vinod M, Dimple R [1, 8], Table 1.

Example 2:

Solve

By taking the step h = 0.01, which has the exact linear and quadratic using Aitken Method, if we take
solution as: quadratic using Aitken Method, we find the same solution

Hence, we can take the approximation solution of

given by Vinod M, Dimple R [1, 8], Table 2. 

Example 3:

Solve,

By taking the step h = 0.01 

First by using Newton's interpolation, we have,

Hence, we can take the approximation solution of

given by Vinod M, Dimple R [1, 8], Table 3.



21 ( ),  (0) 0,dy y x y
dx

= + =

21 ( ),  (0) 0,dy y x y
dx

= + =

21 ( ) 2 ( ),  (0) 0,dy y x y x y
dx

= − + =

Middle-East J. Sci. Res., 28 (3): 235-239, 2020

238

Table 1: Solution of 

x Combined Newton's Interpolation and Aitken Vinod M and Dimple R method s
0 0 0 0
0.01 0.010000000 0.010000083 0.010000333
0.02 0.020001000 0.020000667 0.020002667
0.03 0.030003000 0.03000225 0.030009003
0.04 0.040006000 0.040005334 0.040021347
0.05 0.050010000 0.050010419 0.050041708
0.06 0.060015000 0.060018006 0.060072104
0.07 0.070021000 0.070028597 0.070114558
0.08 0.080028000 0.080042694 0.080171105
0.09 0.090036000 0.090060799 0.090243790
0.1 0.100045000 0.100083417 0.100334672

Table 2: Solution of 

x Combined Newton's Interpolation and Aitken Vinod M and Dimple R method s
0 0 0 0.0000000E+00
0.01 0.010000000 0.009999917 2.4998750E-07
0.02 0.020001000 0.019999333 1.9996001E-06
0.03 0.030003000 0.02999775 6.7469637E-06
0.04

Table 3: Solution of

x Combined Newton's Interpolation and Aitken Vinod M and Dimple R  method Taylor Series method ADM HPM
0 0 0 0 0 0
0.01 0.010000000 0.010100585 0.010100330 0.010100330 0.010100330
0.02 0.020199000 0.020404690 0.020402612 0.020402612 0.020402612
0.03 0.030597000 0.030915863 0.030908719 0.030908719 0.030908719
0.04 0.041194000 0.041637666 0.041620432 0.041620431 0.041620432
0.05 0.051990000 0.052573672 0.052539435 0.052539435 0.052539435
0.06 0.062985000 0.063727448 0.063667310 0.063667309 0.063667310
0.07 0.074179000 0.075102547 0.075005529 0.075005526 0.075005529
0.08 0.085572000 0.086702496 0.086555447 0.086555443 0.086555447
0.09 0.097164000 0.098530785 0.098318300 0.098318293 0.098318300
0.1 0.108955000 0.110590857 0.110295195 0.110295185 0.110295195

CONCLUSIONS 3. Yang,  C.,  J.  Hou and B. Qin, 2012. Numerical

In this work, we have been solve the Riccati nonlinear using  hybrid  functions  and  tau  method, WASET,
first order differential equation by the combined Newton's 6: 569-572.
interpolation and Aitken's method, we compare the result 4. Batiha, B., 2015. Int. J. Appl. Math. Res. A
for some examples with Vinod M and Dimple R  method, numeric-analytic method for approximating quadratic
we find the same results given by Vinod M and Dimple R. Riccati Differential Equation, 4: 24-29.
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