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Analytic Semi group With Partial Differential Equations in A Bannach Space
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Abstract: The question of generating analytic semigroup and existence or non-existence of solution to a given

partial differential equation under some non-linear conditions always comes to mind. This paper considers a
fractional heat equation or partial differential equation in Banach space and uses it to establish a fundamental
solution of the homogeneous part of a given integro-differential equation. It further shows that the fundamental
solution generates an analytic semi-group. In addition its considers existence of a mild solution of a given heat

equation that do not have a global existence for all time t. Finally, we establish that the mild solution satisfies

mean time continuity.
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INTRODUCTION

Consider the fractional heat equation or partial
differential equation in Banach space.

du(t) and

o k(=AY U+ m(t,u(x,0), >0

m(t,u(x,t)) = g(t,u(x,t))+ k(u)(?)

% = —k(—A)%u(x,t) + g(tu(x,0) +k(u)(@), t > ¢,

u(0, x) = up(x) (M

t
where, k(u)r) = J‘a(t —5)g(s,u(s))ds
fy
u, : X - N is bounded and measurable function,

2e(0.2). k>0,A5 is the laplace generator of analytic

semigroup 7, ¢ > 0 on . sl

t=e€

All measurable function #0:% =%, E[f(Xp)]= IP(t,X)J'(y)dy
R

The above equation are discontinuous analogous of
the equation introduced in [1]. Our solution to equation
(1) is weak-predictable random field solution to the class
of stochastic heat equation. We assume that the
homogenous part of given stochastic heat equation to be
u, — Au = 0, with this assumption we establish that there
exist a fundamental solution to this homogenous equation
and also shows that the fundamental solution generates
an analytic semi-group. In [2], the author transformed mild
solution to partial differential equation. Furthermore, if the
mild solution satisfy some nonlinear initial condition,
then they cease to exist mild solution at some finite time
as in [3].

This paper was motivated by the work initiated
by [4], where, they studied the large time behavior of
the stochastic heat equation. The levy N(dt, dx) has
better modelling characteristics and performance of
those phenomena  of
modelling event (for example memory effect) unlike
Brownian motion that has many imperfections. The
levy noise N(dt, dx) has a very rich and vast application
in Finance and Economics.

natural some real world

Definition 1: We say that a process {u(s,x)} yeq 50 1S @ mild

solution to equation (1) if the following is satisfied.
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t
u(t, x) = j P(t,x)ug(y)dy + “P(z — 5,0 (u(s), )dvds (2)
R 0R

where P(t.) is the heat kernel, see [1]. If in addition

w(tX)}en >0 Satisfies the following  condition

sup sup E|u(t,x)? <o for all T > 0, then we say that
0<t<T xeR

{u(t,%)} yegt >0 18 @ random field solution to equation (1).

If we let 7(B)= for all B> 0, ris the

R J‘ __ 4
2 J B +2Rey (&)
R

exponent of the Levy process with the requirement that

Y(P) <.

Definition 2: Mean Time Continuity: The mild solution
equation (2) is said to be mean continuous in time if #, <¢,

d lim sup Efu(ty,x)—u(t,x)=0 for a fixed
x

d .
Sio‘tl_tzkg eR

MATERIALS AND METHODS

Here we state some lemmas and assumptions used in
this paper
Assumption 1: We assume that initial condition is
non-negative real value function u, : i ~ R and g : R - N
is globally lipschitz function satisfying g(x) = L, [x|.
That is, the function o satisfies o (x) < L, x| with L, being
positive number.

Assumption 2: We assume there exist positive function
J and finite positive constant, Lip, such that for all x, y, &

€ A, 100, h)| < J(h) and |50 - o(y.h) < I Lipg |x—v] -

Function J is assumed to satisfy IJ (W v (dh)<k  where k is
R

some finite positive constant and d is the dimension.

Multiply through by exponent (-ff), to get;

Assumption 3: We assume that & - 1 for simplicity.

Prepositionl: Let P(¢, x) be the transition density of a
strictly « stable process, if P(f, 0) < 1 and a>2, then

Pt — ) > P, y) x,yeRe.
a

Theorem 1: Suppose assumption 1 holds, then for each
x € MR, the unique solution to equation (1) is mean
continuous in time . That s, for each.x € % the function  _, £7j17¢,x) ]

is continuous. This theorem require that we take the first
moment of the mild solution and we therefore make use of
the properties of heat kernel, applying some explicit
bound the fractional kernel to obtain precise result.

1

Theorem 2: Suppose
PPOSE Ca.pp < kLipo

for positive constant

k and Lip,, then there exist a solution u that is unique.
The proof of this theorem is based on these two
lemmas below

t

Lemma 1: Let 4%x= I I PO (t - 5,x)0(u(s, y) N(dsdy) »
om?

suppose that |ju | g<co for all B> 0 and o(u, h) satisfies

the assumption 2, then | 4, 1,5 Ca 0 I + Livg 11

_2C(d,o)d +a T(y +1)
d+o-1 ﬂYH

where Cj4.8:

Proof: Taking first moment of the solution. We have,

t
E | A%u(t,x) |:j j | P%(t - 5,%) [E | 6 (u(s),h) | v(dh)ds
0R?

t
skj j | P(t - 5,%) |[1 + Lipy E | u(s)dsdx
oR?

t
ePE| A%, x) <k j j e P | P% (¢ —5,x) | e P11+ Lipy E | u(s) [|dsdx

0R?

t
< kLips sup sup (e_ﬁt[l + Lipg E | u(s) \]I J e A=) | P*(t —s,x) | dsdx

>0 xeR? 0R?

Taking the norm, we obtain that;



Middle-East J. Sci. Res., 27 (3): 162-173, 2019

t
|| A%y g< k[1+ Lipg || u Hl,ﬂ]Stu J e P | p¥(t —5,x) | dxds
>0 0 R
<k{1+ Lipy ||u ”Lﬁ]j J' e B P (s, x) | dsdx
0 RY
0
<K[I+Lipg l[ull 1] [ et
0 R?

Ky _d
|x‘d+a AS @) }Ydsdx.

Let us assume that ;m <5~ which holds only when &> - Then,
[x] -

0
. _ 1 dx _d 1
| 4% |l g< C(d,o0)k{1+ Lip, ||u||1’ﬂ]‘[e Basts Pt I —d]
0 s & 11
1

|x|<s

0 s ©
=C(d,00)k[1+ Lips || u |‘1’B]I€7ﬂtds[s(—j Xﬁ(d+a)dx)+ J‘xf(d+a) +2s%]
0 1

e E
~(d+a-1) & p(dral) o

+ | 1)+2s
o 1-d-o ls¢

1=d
o

]

= C(d, k[l + Li Ps gs[s(—2
(d,c0)k[1 + zpo|u||1,ﬁ]£e S (-2 ——

1+(l-d-a

o0
_ ; ~Bs # o
= C(d,)k[1 + Lipy |u||1,ﬁ].£e dif———s +2s

-d
o

o—1

o0

, d+a Bs 1-d
Thus, || 4%y g<2¢(d.0)k1 + Lipg Hu||1,/_;]d+a_1j‘sye Bs 4 , where r=—=

. d+o T(y+1
Therefore, || A%u [ 5< 2C(d,@)k[1+ Lipg || u ”l’ﬁ”m gyﬂ )

] €

If u and v are two predictable random field solutions, then by equation (3) and theorem 2 we have,

llull,g +1Ivihp<Cquplhlips [lu—vi g -

By assumption made earlier that, U be an open subset of (0, =) x X,. A function fis said to satisfy assumption
F mentioned earlier if for every (¢ x) € U there exist a neighborhood ¥ = U of (¢, x) and constant L >0, 0 < 6 < 1 such
that | f(s1.) = f (s [IEL | 51— 5, ”0 +lu=vll, for all (s,, u) and (s,, ) in ¥, which implies a continuous function u
t
defined from U into X satisfying ()= s( —1g)uq + js(t —$)f(s,u(s) + k@u)sds, teU 15 @ mild solution.
ly

Hence, there exists a mild solution to (1). Omaba (2016)

Lemma 2: For qd - Then,

> B>0,0<t<tp,x€

d+a I=d I—d
[ 1Pz, = Pl m(r)dy [ 2Cy (d o) === (1, =)
o d+a
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Proof: Let [ [P(2.0~P(4.91u()dy = Di  Then,
md

| Dy [ [P(t,) = Pl u(r)dy < sup [u(0.)| [ Pt = Py, )k
R4 R4

=Cy [ 1P(t2, %)~ Py, %) | dx
st

RESULTS

Establishing a fundamental solution of the Homogeneous part of the Integro-Differential Equation Given,

du(t)
dt
u(0, x) = uy(x)

=—k(— A)Zu(x 1)+ g(t,u(x,t)), t>t, )

when the most right of the equation is equal to zero, @ = 2, k = 1, our stochastic heat equation becomes homogeneous

equation. That is,

—Au=0,t>0,xe®" with initial condition u(x,0)= f(x)

We find our u,, Au and substitute to our homogeneous equation.
We start by seeking a solution with the special structure

1 r
u(wn) =) (5)

where ;o x|l=yx2 + 1% +...+x,2 , so that v, is radially symmetric and e, 8 are constants to be determined.

The formula for Laplacian of radially symmetric function is given as;

Av(r)=v"(r) + v '(r)

Recall special solution u(x,,):LV(L) and define Al,:LAV(L)
L o P

Differentiate equation (5) with respect to 7 gives,

() = V) + ) = B P e )
_ - _ _ _ (6)
— o v( )ﬂrt (ﬁ+l) —ot (a+l)v( )_ (X V( B)ﬁr t ﬁ+1 —ot ((X+1)V( )
Let =" we have,
t
(7)

u, = —ﬁt_(a+1)v'(z)z —at™ @D (z)

165



Middle-East J. Sci. Res., 27 (3): 162-173, 2019

Au = l/taAv(Lﬁ) and Av(r) = V") + L) ®)
¢ r
Differentiate AV(LB) twice with respect to 7.
t
We have,
M=)+ ) = gy )+ ) ®
i r B
_ 2By T 0=l ey T
t V(tﬁ)+_rﬁt V(tﬁ)
#
Let ;- wehave,
B
Au =1~ @ 2B, v'(z) (10)
Substitute (7) and (10) into general homogeneous heat equation i.e U, — Au = 0, we have
ﬁt(‘“l)zv'(z) ot (£+1)V(Z) / —(a+2P) V(2 ) t —(a+2p) Vi(z)
—(a+1) , —(@+28) ) (11)
= t [Bzv'(z) + av(z)] + ¢ [v v'i(2)]=
Choose f=1/2
= iv’(z)+0(v(z)+v _lv'(z) =0
2 (12)
Choose a = n/2
= B '(z)+—v(z)+v '(Z) 0 (13)
Multiply through by z"', we have
z" f n p-1 n—1_n n—27,1 _
7\) (Z)+EZ v(z)+z" v'(2)+(m-1z"V'(z)=0
=~ Lemyiemty=o
2 (14)

For these derivatives to be equal zero, it implies the functions are constant.

Thatis, L n,, .n-1,_ constant
2
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This is possible if and only if lim v(z)=0 and lim v(z)=0
t—0 z—0
= z"_1[£v+v'=0
2
27 ¢O:§v+v'=0

= viv=—z/2,

Integrate both sides, that is,

2 Z2 Z2

Iv'/vdz =_—1J.zdz:> Inv:—Z—+C: VZE_T = A[T
2 4

Recall, __. /B _,/112 g_1)
Theref e
erefore, W= e = e A since r = [x|
12
1 x| n x|
X LA
= Ut =—v()=1/t2.4e ¥
o 1
t 12
Hence, no_|x

U(x,t)= At 2e %

Here our semi-group is _” _M  where the generator of the semigroup is 4.
t 20 4

To find A, we normalized u such that

_n _K
juuﬁw:lz At 2e Hdx =1
R" R"

_no A
= At zje dx =1
R

- *(X2+y2)d d
s

We integrate using polar coordinate, letting - rcosg, y = rsing,= x2 + 2 =2
By Jacobian,
dxdy = rdrd 0

Let change 6: 0 to 27, 7: 0 to = and let a =’ = da/dr =2r,dr = da/2r

167
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2T
Equation (16) becomes 1 I a6 I e —r
2
0 0

2
We have been able to show that: J. eV dy=+n
R
Now, from normalization W) =1

= A.Z”(n%)” = AT =1

We can make 2 and 7 have the same power, that is,

A4 =1= A(4m)? =1
Therefore, 4— (L)%
4r

I

Substitute the value of 4 into equation (15). That is, T
u(x,t)= At e ¥

Where % is the semigroup generated by A.
t 2eH

Hence

M

u(x,t) = (Lﬁ{%e 41
4r

(18)

is the solution of heat equation ,, _a, =g ;>0,xen and it is called Fundamental solution of homogenous heat equation.

Generation of Analytic Semi-group from the Fundamental Solution: We show that the fundamental solution generates

an analytic semigroup

Let il I
! s !

T=e¥ =Tt =e#t2
When n = 0 we have,

2

Tt=e *t

but when n=1 we multiply both sides of equation (18) by 4 to have

i
Tt=e %t .

P

Now, attr =0,

Tt=e % ¢,

168
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We have T(0)=(0) = 1 = T(0)x = I(x) that is identity of x, first property of a semigroup.

Since, SAi i (20)
Tt=e%t Ts=e%s

2

=>TtTs=¢e % te* s=T(s+1).

Hence, , ™ isan analytic semigroup generated by fundamental solution of homogenous heat equation.
t e

Existence of Mild Solution: As it was established earlier in this paper that the Laplacian generator of alpha process w5

generate an analytic semigroup (z,) ., and ( A%u) is invertible.The result of below shows that the mild solution to

equation (1) is unique.

Theorem 2: Suppose the operator G generates the analytic semigroup 7, ;>0 With ||7¢)|<m, >0 and 0c p( R If the

maps fand g satisfy assumption 1 and the real valued map « is integrable on J, then equation (1) has a unique mild
solution for every u, € X.

Proof: To establish the existence of the mild solution we assume that, 0< 7 < «. We now fix a point (¢, u,) in the open

subset U of [9 w)xx,, and choose o >t and 6 > 0 such that | r(u)- r(s,v) <Ly lu-vl forall (s, u)and (s, v)in V, with

some constant L;>0 hold for function f'and g on the set.

V=A(t,x)eU:ty <t || x—ug o< 8 @1

Let Bi= sup [/ @up)ll apnd B2= sup [lguo)ll
ty<t<y ty<t<y

Choose llv >t such that || T(t —10)— I |I<|| AU, S%é‘ (22)

Forall ;" 0 and 'y < min{y' - fo[% Co =) (Lo + B) + ap (LS +By)} 1T} (23)

where C, is the positive constant depending on « satisfying

| A%T (1)< Cp @ TOr 1> 1 @4
where
T
ap = J'| a(s)| ds. 25)
0

Let Y y_ cy(.q)x be endowed with supremum norm |[y|Y.

Therefore, Y is a Banach Space.
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We define map on Y by P and _ is given as
y=y y

t s
Y(6) = T(t —t9) A%ug + j APT(t = $)[f (5, 4% p(s)) + j a(s —1)g(t, A% y(t))dt]ds.
) )

Now, for every and for ;) < </<4, we have

yeY,Fy(ty) = Aauo

t
Fy(t) = Fy(s) =[T(t = t) = T(s — to)]14%uq + IAaT(f ~){f (2,47 ¥(1))

s
T S

+ [la@-mem. 4™ ya)dnlde + [ ATt ~7) = T(s ~D)}{f (7,4 “(2)
t L

+ [a@-me@m, 4 y@m)dn}dz

fy

By assumption (2) on the function f'and g together with equation (24) and (25) we have the fact that F:Y - YV

Theorem 3: Let S be nonempty closed and bounded set given by

S={yeY:y(ty) = A%u,|| y(t) - A% |I< &

Then, for y € S, we have
| Fy () = A%uq || T(t = to) = T || || A%uq ||

t
1 AT @ =) 11 £ (5,47 p(5) = £ (00 |1 s

0}

t N
14T =) L1 a(s =) || g(T.ug) | T

0} )

t
1 AT =)l 1 £ (s0) 11 s

fy

t t
Il 47T =) 1L 1 ats =) 1| g (zuq || dTds

ty fy
< %5 +C,(1— ) [(LyS + By) + ag (LyS + Byt —15)™*
<5

By the last two inequalities and follows from equation (22) and (23), we have that, F: S - S.
Now, we show that F'is a strict contraction on S.

Let y and z be in S; then

170
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| Fy(t) = Fz(0) |I=l] y(6) ~ 2 (7) |

t
< III APT(t = $) |1 f (5, 4% (s) = [ (5,4%2(s) || ds

fy

t N
+ [I14°T @ =) 11| a(s =) 1] g7, 4% 9(2) - g(1.4“2@)) || dT)ds

29)
f fy
By our assumption (2) on function f'and g and making use of equation (22)and (23), we get
t
| Fy(2) = Fz(1) [I< Lo[(1 +ar)j\| A*T(t=s) || ds]l| y -z |ly
)
< Lo(1+ar)Cq(l-a) (4~ 1) ™ ||y =z ly
1 - -
<< L8+ ap)Col=0)" (0 =10) |y ==y
1 - -
SE[L05 + By +ap(Lob + By)IC,(1-a) ' (ty —19) ™ [ y -z |y
1
SE”.V_ZHY (30)

By the last inequality and equation (23), thus F'is a strict contraction map from S into S and by Banach contraction
principle, there exist a unique fixed point y of F. That is, there exist y € S such that,

Fy=y=y G1)

Now, let we Ay Then for ¢y, We have

t
u(t)= A_ay(t) =T(t—ty)ug + IT(t =) f(s,u(s)) + ku(s))ds

l
Hence u is a unique mild solution to equation (21).

Mean Time Continuity of the Mild Solution: Establishing the mean continuity in time of the mild solution, by Duhame’s
principle the mild solution will be of the form;

t
u(t,x) = j P(t,x)ug(y)dy + j j P(t - 5,%)0 (u(s, x))dsdx
R 0R?

(32)

With P(z,.) be the heat kernel. We impose the following integrability condition on the mild solution. That is,

sup sup |u(t,x)|<o ywhere

120 yeot? 0<t <ty <t
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4
u(t,x) = [ Pltx=yug(dy+ [ [ Pty = s,x = y)o(u(s,x))dsdx (33)
Rr? 0 R?
2}
u(ty,x)= [ Plty,x=ugdy+ [ [ Pty =s5,x = ) (s, x)dsd (34)
R 0 RY

¢c b c B 4 4
By integral property: (= - which implies that,
1]

)
u(ty,¥)= [ Plty,x= gy -+ [ [ Pty =s,3= y)o(uls, y)dsdy + [ [ Pty =s,x = y)o(u(s, y))dsdy
R 0 R? 4 R?

Therefore, for a fixed, = _.4
)

il
u(ty, ) =u(ty,x) = [ Play,x =gy + [ [ Pty =s,x= »)o(s,p)dsdy+ [ [ Py =s5,x= )0 (s, y)dvs -
R 0Rd 4 R

]
([ Pt x= ooy + [ | Pt = 5.5 = y)o(s,y)dsdy)]
®"? 0R

]
= [ (P, x =)= Pt x = gy + [ [ Pty = 5.5 =)= Pty = 5,5 = ) (5, )dscdy
® 0R?

2}
+ I J. P(ty —5,x—y)o(s,y)dsdy.
nR!

Iy
|ty ) =ulty, ) |5 [ (Pleysx =)= Plty,x=»Dug)dy+[ [ Pty =s,%= )= Pty = 5,5 = y)0 (s, )dsdy
R? 0 R

)
[ [ Py =53 y)o s, y)dsay |
4 R?

Taking the limit as ¢, approaches ¢,, we have
)
lim [t ) ~u(t0) |5 [ Ptyx=3) = Pllgx =y gy + [ [ Pty = 5.3 y) = Plty = 5.0~ y)o(s.y)dsdy
1% iRd 0 md

)

[ [ Py =s.x=p)0(s,v)dsay |
t, RY

=0+0+0[=0.

Using the estimate property on the heat kernel of alpha-stable process, we have

P(ty,x— )= Pt x— ) = (ty « A—2—— )~ (& A—1
(t2,x =)= P(1,x = y) = (1 A|x—y\d“") 1 A|x—y|d+°‘)'
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_d t _d
Therefore, E | D, < Cyf j (ty « A——2—)dy - j (67" A———)dy}
2 xeyl s eyl
_d ty dy —d
But | (b “A——F2)dy=1, (————)+t@ dy
mjd [ x =yl J L eyl J
byl i<ty
1+(1-d—a) (1-d) (1-d)
J W), B 0, 220 -ttt
d+o-1 d+o-1

Doing the same for the integral on #,, we have

d+o dy  (=d
D, £2C,C(d +0t)————(t, ¢’ —
| Dy |<2C,C( )d+a—l(2

Combining theorem 1, lemmaland lemma 2, we have

d+a —d
E|u(ty,x)—u(ty,x)|2C,C(d,0) ———(t, *
[u(ty,x) —u(t,x) < 2C,C( )d+a—1(2

5! i

=d
=14 )+2kLipsC(d,0) |luh, g P

d+o
+o—1

Lt

(=Pt Jz%dz P | 2% e P dz 4 2hLipgC(d,or) |[u g P % [ sae P
: e

4 0

Then 11“6‘ 5“1" BE\“(ZZ’X)*“UM”SO and therefore lim
th—tyl<

Hence, |,5,x)~ u(y,x)=0 - This implies that the mild

solution to the given stochastic heat problem is mean
continuous in time.

CONCLUSION

Herein, we have been able to establish a fundamental
solution of the homogeneous part of the partial
differential equation using fractional heat equation in
Banach space. We also generate an analytic semi-group
using the fundamental solution established from fractional
heat equation. Furthermore, we established the existence
of a mild solution from the stochastic heat equation that
do not posses a global existence of solution for all time t
and find out that our mild solution satisfy mean time
continuity.

173

sup  E|u(tp,x)—u(1,x)[=0
[t,~t,1<8
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