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Abstract: The laminar fully developed mixed convection flow of a Jeffrey Nanofluid in a vertical channel
bounded by parallel plates with asymmetrical thermal and nanoparticle concentration conditions at the walls
is investigated. The nanofluid model used here includes the effects of Brownian diffusion and thermophoresis.
The expressions for the velocity, temperature and nanoparticle concentration profiles are obtained. Nusselt and
Sherwood numbers at the left wall of the channel are determined and discussed in detail. When the Jeffrey
parameter and heat source parameter tend to zero, the results deduced agree with the corresponding ones of
Grosan and Pop [27]. It is observed that the velocity increases at the hot wall and decreases at the cold wall due
to increasing Jeffrey parameter. But opposite behaviour is noticed in the case of the buoyancy ratio,
thermophoresis, Brownian motion and heat source parameters. Further a numerical solution is also obtained
and is compared with the analytical solution.
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INTRODUCTION are called nanofluids [11]. It is repeated that they have

Combined forced convection and natural convection, Successful application of nanofluids will support the
or mixed convection, occurs when natural convection and current trend towards component miniaturization by
forced convection mechanisms act together to transfer enabling the design of smaller and lighter heat exchanger
heat. This occurs where both pressure forces and systems. The convective heat transfer characteristics of
buoyant forces interact. Heat transfer applications in a nanofluids depend on the thermophysical properties of
channel where both forced and free convection play a role the base fluid, the flow pattern and the volume fraction of
in determining the velocity and temperature fields arise in the suspended particles and their dimensions. and the
many practical applications. A frequently encountered shape of these particles. Nanofluids have many important
configuration in thermal engineering equipment is the industrial applications also (for example nuclear reactors,
vertical channel. This configuration is used to model, for nanodrug delivery, cancer therapeutics, sensing and
example, collection of solar energy and cooling devices of imaging). Buongiorno [12] reported that the nanoparticle
electronic and microelectronic equipments. Literature absolute velocity can be viewed as the sum of the base
review of the fully developed mixed convection flow in fluid velocity and a relative velocity. He calls it as the slip
channels has been presented by Tao [1], Aung and velocity. He has concluded tha in the absence of
Worku [2], Cheng et al. [3], Hamadah and Wirtz [4], Chen turbulent effects, it is the Brownian diffusion and the
and Chung [5], Barletta [6], Barletta et al. [7, 8], Boulama thermophoresis that are important and he has suggested
and Galanis [9], etc. It is observed that conventional heat conservation equations based on these two effects. This
transfer fluids such as ethylene glycol mixture, etc.) are model has been used by Nield and Kuznetzov [13],
poor heat transfer fluids because of their low thermal Kuznetov and Nield [14], Khan and Pop [15] and several
conductivity. In order to increase the thermal conductivity authors to study Convective flows of nanofluids.
of the base fluids, researchers have tried to suspend solid Numerical and experimental studies on nanofluids inside
particles in fluids, since the thermal conductivity of solids cavities  are  made  by  Kang  et  al.,  Khanafer et al.,
is typically higher than that of liquids [10] Fluids with Tiwari et al. and Aminossadati et al. [16-19]. Important
particles of the order of nanometers suspended in liquids reviews on nanofluid flows are given by Daungthongsuk

superior properties compared to usual heat transfer fluids.
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and Wongwises [20], Wang and Mujumdar [21] and Subscripts:
Kakac  ̧and Pramuanjaroenkij [22]. Fully Developed Mixed f Base fluid
Convection in a Vertical Channel Filled by a Nanofluid is p Solid particle
studied by Grosan and Pop [23]. Natural convective
boundary-layer flow of a nanofluid past a vertical plate is Mathematical Formulation of the Problem: Consider a
discussed by Kuznetsov and Nield [24]. Effects of Heat Jeffrey nanofluid that steadily flows between two vertical
Generation or Absorption on Free Convection Flow of a and  parallel  plane  walls  apportioned  by  a distance L.
Nanofluid past an Isothermal Inclined Plate are analysed Let x-axis be aligned parallel to the gravitational
by Akilu and Narahari [25]. MHD free Convection Flow of acceleration vector , but with the positive direction and
a Nanofluid past a vertical Plate in the Presence of heat y-axis be taken orthogonal to the channel walls. Let y=0
generation/ absorption effects is studied by Chamkha and and y=L act as two vertical walls respectively. It is
Aly [26]. Analytical solution for peristaltic flow of assumed that the temperature and the nano particles
conducting nanofluids in an asymmetric channel with slip concentration at the wall at y = 0 are T and C  and at the
effect of velocity, temperature and concentration is wall at y = L are T and C , respectively.
studied by Sreenadh et al. [27].

In this paper mixed convection flow of a Jeffrey
nanofluid in a vertical channel is studied.

Nomenclature:
A to G Constants
C Nanoparticles volume fraction
D Thermophoretic diffusion coefficientT

L Distance between parallel walls
Gr Grashof number
Nb Brownian motion parameter
Nt Thermophoresis parameter
Sh Sherwood number
u, v, velocity components in the x- and y-  directions

Jeffrey parameter Fig. 1: Physical model1

c heat capacity at constant pressure
g Gravity acceleration vector Assuming the Oberbeck-Boussinesq approximation,
D Brownian diffusion coefficient the governing equations reduce to [23].B

K Thermal conductivity
T Jeffrey parameter
Nr Buoyancy-ratio parameter v=0,
Nu Nusselt number (1)
p Pressure
T Fluid temperature
x, y Cartesian coordinates (2)
v velocity vector

heat source parameter

Greek Symbols: (3)
Pressure parameter
Thermal expansion coefficient
Rescaled nanoparticle volume fraction

µ Dynamic viscosity (4)
Kinematic viscosity
Dimensionless temperature
Density The boundary conditions are given by;

1 1
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u = 0, T - T , C = C  at y = 0 thermophoresis parameter . These parameters are given1 1

u = 0, T = T , C = C  at y = L (5) by;2 2

In order to determine the pressure gradient from
equation(2), the mass flux conservation Q is required. (13)

(6) The physical quantities of interest are the Nusselt

We introduce now the following dimensionless
variables:

(7) Substituting Eq.(7) into Eq.(4), we get,

where, following Barleta and Zanchini [28], we assume
that T = (T  + T )/2 and C  = (C  + C )/2. Substituting Solution of the Problem: Equations (8)-(10) along with the0 1 2 0 1 2

these variables into Eqs. (2)-(4), we get the following boundary conditions (11) and the mass flux conservation
ordinary differential equations: equation (12) have been solved analytically. The

the pressure gradient are given by;
(8)

(9)

(10)

The boundary conditions (5) become

(11)

The mass flux conservation relation (6), becomes

(12) (19)

where we have taken Q = u L. where,0

In the above equations,  is the pressure

parameter, Gr is the Grashof number, Re is the Reynolds
number and Gr/Re is the mixed convection parameter, Nb
is the Brownian motion parameter and Nt is the

(Nu) and the Sherwood (Sh) numbers defined as;

(14)

(15)

expressions for velocity, temperature, concentration and

(16)

(17)

(18)



Re
Gr

,
Re

Re 2

Gr NtF Nr NrA
Nb B

Gr Nt NrAG C Nr
Nb

  = − + +    
  = + +    

(0) ,

(0)

Nu BD
B

NtSh BD A
Nb B

′= − = +

  ′= − = − + +    

Middle-East J. Sci. Res., 25 (5): 950-959, 2017

953

Table 1: Comparison between analytical and numerical results
Pressure Gradient Nusselt Number ’ (0) Sheerwood Number ’(0)
----------------------------- ------------------------------ -----------------------------

Nr Nt Nb Analytic Numeric Analytic Numeric Analytic Numeric1

0 0 0 0.2 0.3 0.05 9.2308 9.23080 2.4533 2.45326 2 2.00000
0 0.2 0.2 0.3 0.05 9.2308 9.23080 2.9338 2.93626 1.0662 1.08874
5 0.2 0.2 0.3 0.05 8.4151 8.41510 2.9338 2.93626 1.0662 1.08874

1000 0 0 0.2 0.3 0.05 -75.5273 -75.52730 2.4533 2.45326 2 2.00000
0 0.2 0.2 0.3 0.05 -153.9121 -153.91210 2.9338 2.93626 1.0662 1.08874
5 0.2 0.2 0.3 0.05 -154.7278 -154.72780 2.9338 2.93626 1.0662 1.08874

(20)

Using Eqs.(17) and (18), the expressions for the Nusselt and Sherwood numbers defined by Eq. (15) become;

(21)

In  order  to check the analytical solution (16), (17) and  (18)  with  numerical  solution,  we  applied RK method of
fourth order along with Shooting technique. The comparison is presented in Table 1. A very good agreement is seen
between exact and numerical results.

RESULTS AND DISCUSSION

In this paper, steady flow of a mixed convection through vertical channel filled by a Jeffrey nanofluid is examined
and the results are discussed for various physical parameters such as the buoyancy ratio parameter Nr, the Brownonian
motion parameter Nb, the Thermophoresis parameter Nt, heat source parameter  and Jeffrey parameter . In this1

analysis, for numerical calculation we used Nt = Nb = 0.5,  = 0.3,  = 0.5 and Nr = 100, for a fixed value of the mixed1

convection parameter Gr/Re=1000. These assigned values are kept as common in the entire study except for discrete
values as displayed in Figures 2-13.

Fig. 2: Variation of dimensionless Velocity when Nr=0, 10, 100, 500, 1000 and Nt=Nb=0.5,  = 0.3,  = 0.51
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Fig. 3: Variation of dimensionless velocity When Nb=0.025, 1, 2.5, 5, Nt=0.5, Nr=100, and  = 0.3  = 0.51

Fig. 4: Variation of dimensionless velocity when Nt=0.1, 2.5, 5, Nr=100, Nb=0.5 and  = 0.3,  = 0.51

Fig. 5: Variation of dimensionless velocity when  = 0.5,0.6,0.7,0.8 and Nt=Nb=0.5, Nr=100, =0.51
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Fig. 6: Variation of dimensionless velocity when =0.1, 0.2, 0.3, 0.4, 0.5, Nt=0.5 Nr=100, Nb=0.5 and  = 0.31

Fig. 7: Variation of dimensionless temparature (full line) and dimensionless concentration (dot line) when Nt=0, 0.25, 0.5,
0.75, 1 and Nb=0.5,  = 0.3,  = 0.51

Fig. 8: Variation of dimensionless temparature (full line) and dimensionless concentration (dot line) when Nb=0.025, 0.25,
0.5, 0.75, 1 and Nt=0.5,  = 0.3,  =0.51
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Fig. 9: Variation of dimensionless temparature (full line) and dimensionless concentration (dot line) when  =0.1, 0.2, 0.3,
0.4, 0.5, Nb=0.5 and Nt=0.5,  = 0.31

Fig. 10: Variation of reduced Nusselt number – ’(0) (full line)and reduced Sherwood number – ’(0) (dot line)with
respect to Nt when Nb=0.1, 0.3, 0.5,  = 0.5

The variation of velocity with y is computed from different values of Nt, Nb and . Figs. 7, 8 and 9 display
equation (16) and is shown in Figures 2 to 6 for different the temperature and the nanoparticle volume fraction
values of Nt, Nb, Nr,  and . It depicts that the velocity profiles for different values of Nb, Nt and . Thus, we1

increases at cold wall and decreases at hot wall with notice from Figs. 7, 8 and 9 that both temperature and
increasing Nr, Nt, Nb and , where as opposite nanoparticle volume fraction profiles increase with the
phenomena is observed in Jeffrey parameter . The increasing of the parameter Nb, where as temperature1

variation of temperature and nanoparticle volume fraction profile increases and nanoparticle volume fraction
with y are computed from equations (17) and (18) for decreases with the increasing of Nt and .



Middle-East J. Sci. Res., 25 (5): 950-959, 2017

957

Fig. 11: Variation of reduced Nusselt number – ’(0) (full line)and reduced Sherwood number – ’(0) (dot line)with
respect to Nb when Nt=0.1, 0.3, 0.5,  = 0.5

Fig. 12: Variation  of  reduced  Nusselt  number  (full line) and reduced Sherwood number (dot line)with respect to Nt
when  = 0.1, 0.2, 0.3, 0.4, 0.5, Nb=0.5

The  variation  of Nusselt and Sherwood numbers of  Nb  where  as  Nusselt number decreases and
with  Nt,  Nb  and   is  computed  from   equation  (21) Sherwood  number  increases  with   increasing   of Nt
and  is  shown  in  Figures  10  to  13  for  different values and  Nusselt number increases where as Sherwood
of  Nt,  Nb  and .  It  is  seen  that the Nusselt number number decreases with increasing of  at fixed values of
and  Sherwood  number  both  decreases  with  increasing Nt and Nb.
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Fig. 13: Variation of reduced Nusselt number – ’(0) (full line)and reduced Sherwood number – ’(0) (dot line)with
respect to Nb when  =0.1, 0.2, 0.3, 0.4, 0.5, Nt=0.5
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