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Abstract: Mining frequent sub-graphs has attracted a great deal of attention in many areas, such as
bioinformatics, the web data mining and social networks. There are many promising main memory-based
techniques available in this area, but they lack scalability as the main memory is a bottleneck. Taking the
massive data into consideration, traditional database systems like relational databases and object databases
fail   miserably  with  respect  to  on  efficiency  as  frequent  subgraph  mining  is  computationally  intensive.
The proposed algorithm is parallel iterative Map-Reduce based frequent subgraph mining (PSGM), which in
this work a frequent subgraph mining algorithm called PSGM which uses iterative Map-Reduce based
framework. PSGM is complete as it returns all the frequent subgraphs for a given user-defined support and it
is efficient as it applies all the optimizations that the latest FSM algorithms adopt. The experiments with real life
and large synthetic datasets validate the effectiveness of PSGM for mining frequent sub-graphs from large
graph datasets.
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INTRODUCTION said to be transaction setting and the frequency of a

Mining frequent patterns have motivated many pattern appears in the whole graph is said to be single
researchers since the very first research on finding the graph setting. There are a few implementations for finding
association rules in itemset. In many domains graphs are the frequent patterns in a single graph using Map-Reduce
prevalent such as bioinformatics, Semantic Web, framework and one for finding sub-graphs in transactions
cheminformatics and social networks. In graph mining graphs in a grid environment. All major frequent subgraph
research, frequent subgraph mining is a very  well-studied mining algorithms are on the assumption that the graph
area because of its wide range of applications in the data fits well in memory. Memory-based algorithms do
above areas. Frequent patterns can help different fairly well on small datasets but as the data size increases,
functions   and  relations  to  understand.   For   example, memory becomes a bottleneck. To overcome the
in a protein-protein interaction network (PPI), a frequent problems,  a  few  database  approaches  was  proposed.
pattern could uncover unknown functions of a protein The issue with the database model is that as the dataset
and in a social network a friend clique is considered to be size grows, computation time rises drastically.
a frequent pattern. There are two different aspects of The Map-Reduce framework of distributed computing
mining frequent subgraphs. 1) Using a single large graph. is one of the most successful. It adopts a data-centric
2)   Using   a  set  of  graphs.  The  difference   in   the approach to distributed computing with the ideology of
single graph  setting  and  transaction  setting  is  count. “moving computation to data”; to improve the IO
The frequency of a substructure is determined by the performance while handling massive data it uses a
number of graph transactions containing the pattern is distributed   file  system  that  is   particularly   optimized.

substructure is determined by the number of times the
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The main reason for the framework is to gain attention to Related Work: There exist many algorithms for solving
higher level of abstraction that it provides, it keeps many the in-memory version of frequent subgraph mining task
system level details hidden from the programmers and most  notable   among  them  are   AGM  [1],  FSG  [2],
allows them to concentrate more problems specific on gSpan [3], Gaston [4] and DMTL [4]. These methods
computational logic analyses are limited to estimating assume that the dataset is small and the mining task
global  statistics  (such  as  diameter),  spectral  analysis, finishes    in   a   reasonable   amount  of  time  using  an
or      vertex-centrality     analysis.    Efforts   for  mining in-memory  method.  To  consider   the   large   datasets,
sub-structure are not that common, except a few works for a few traditional database based graph mining algorithms,
counting triangles. Specifically, frequent subgraph mining such as DB-Subdue [5] and DB-FSG [6] and OOFSG [7]
on    Map-Reduce   has   received  the  least  attention. are also proposed.
Given the growth of applications of frequent subgraph For large-scale graph mining tasks, researchers
mining in various disciplines including social networks, considered shared memory parallel algorithms for frequent
bioinformatics,    cheminformatics     and    semantic   web, subgraph mining. Cook et al. presented a parallel version
a  scalable  method  for  frequent  subgraph  mining on of their frequent subgraph mining algorithm Subdue [8].
Map-Reduce is of high demand. Solving the task of Wang et  al.  developed  a  parallel  toolkit  [9]  for  their
frequent subgraph mining (FSM) on a distributed platform Motif-Miner [10] algorithm. Meinl et al. created a software
like  Map-Reduce  is  challenging  for  various  reasons. named Parmol [11] which includes parallel implementation
First, an FSM method computes the support of a of    Mofa   [12],   gSpan   [17],   FFSG  [13]  and  Gaston.
candidate subgraph pattern over the entire set of input Par SeMis [14] is another such tool provides the parallel
graph dataset. In a distributed platform, the input graphs implementation of a gSpan algorithm. The problem caused
are partitioned over different worker nodes, the local by the size of input graphs is scalability; there are a
support of a sub-graph at a worker node is not much couple of notable works, PartMiner [15] and
useful for deciding whether the given subgraph is PartGraphMining [16], which can be based on the idea of
frequent or not. Also, local support of a subgraph in partitioning the graph data. 
various nodes cannot be aggregated in a global data There also exists a work [17] on adaptive parallel
structure because Map-Reduce programming model does graph mining for CMP Architectures. Map-Reduce
not provide any built-in mechanism for communicating. framework has been used to mine frequent patterns where
Also,    the    support   computation   cannot  be  delayed, the transactions in the input database are simpler
as following Apriori principle; future candidate frequent combinatorial objects such as a set  [18], [19],  [20],  [21],
patterns [1] can be generated only from a frequent pattern. or a  sequence  [22].  In  [23],  the   authors   consider
A parallel method to extract the significant patterns from frequent  subgraph  mining  on   Map-Reduce;   however,
a set of labeled graphs using  Map-Reduce  is  proposed. it is inefficient due to various shortcomings. The most
It works for both directed and undirected graphs. Given a notable method is that do not adopt any mechanism to
graph dataset D = {G ,G ,…..,G }, the support of a avoid generating duplicate patterns. Due to the size of the1 2 n

subgraph S(g) indicates the total number of times the candidate sub-graph space the size gets increased;
subgraph g appears in the whole dataset D. A subgraph furthermore, the output set contains the duplicate copy of
g is called frequent if S(g) at least satisfies the user the same graph patterns that are hard to unify as the user
provided support. It constructs and retains all the has to provide a sub-graph isomorphism routine for this
patterns that have a non-zero support in the map phase of method. Another problem with the method is that it
the mining and then in the reduce phase, in a different requires the number of MapReduce iterations can be
computing nodes it decides whether a pattern is frequent specified by the user. Authors did not mention how the
by aggregating its support is used to ensure total  iteration  counts  are  determined  so   that   the
completeness. To overcome the dependency of a mining algorithm can find all frequent patterns for a given
process, PSGM runs in an iterative fashion, where the support. One feasible way to set the iteration count to be
output from the reducers of iteration i-1 can be used as an the edge count of the largest transaction, but that will be
input for the mappers in the iteration i. The mappers of an overkill of the resources. FSM-H does not suffer any
iteration  i  generate  candidate  subgraphs  of  size i limitations from the above method. During the revision
(number of edges) and also compute the local support of phase of this journal, it became  aware  of  another  work
the candidate pattern. The reducers of iteration i then find [23] of frequent subgraph mining on MapReduce. It is a
the true frequent sub-graphs (of size i) by aggregating non-iterative method which runs on each partition of the
their local supports. graph database.
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Proposed Work: Map-Reduce is a programming model where a single large file is transparently diced up and
that enables distributed computation over massive data. distributed across multiple physical computing elements
The model provides two abstract functions: map and (all while appearing to remain a single file to the user) is
reduce. Map corresponds to the “map” function and not trivial.
Reduce corresponds to the “fold” function in functional Hadoop, the most widely used map/reduce
programming. A worker node in Map-Reduce is called a framework, accomplishes using HDFS, the Hadoop
mapper or a reducer. A mapper and reducer takes a Distributed File System. HDFS is fundamental to Hadoop
collection of (key, value) pairs and applies the map because it provides the data chunking and distribution
function on each of the pairs to generate an arbitrary across computing elements necessary for map/reduce
number  of  (key,  value)  pairs  as  intermediate  output. applications to be efficient. Since it talking about an actual
The reducer aggregates all the values that have the same map/reduce implementation and not an abstract concept,
key in a sorted list and applies the reduce function on that let's refer to the abstract compute elements now as
list. The  output  writes  to  the  output  file.  The   files compute nodes.
(input and output) of Map-Reduce are managed by a
distributed file system. Hadoop is an open-source
implementation of Map-Reduce programming model
written in Java language.

Fig. 1: Parallel Frequent Subgraph Mining Architecture 

Hadoop Distributed File System: HDFS is a technology
that it provides data distribution, replication and
automatic recovery in a user-space file system that is
relatively easy to configure and conceptually, easy to
understand. However, the utility comes to light when
map/reduce jobs can be executed on data stored in HDFS.
As the name implies, map/reduce jobs can be principally
comprised of two steps: the map step and the reduce step. Fig. 3: Map/Reduce Jobs
The overall workflow generally looks something like this:
The idea underpinnings map/reduce bringing compute to Map/reduce Programming Model: The purpose to deal
the data instead of the opposite should be like a very with the massive data distributed and stored in the server
simple solution to the I/O bottleneck in the traditional cluster, such as crawled documents, web request logs,
parallelism.    However,    implementing  a   framework etc., the programmer writes program  in  order  to  get  the

Fig. 2: Hadoop distributed file system

When a file is copied into HDFS as depicted above,
that file is transparently split into "chunks" and replicated
three times for reliability. Each of these chunks is
distributed to compute nodes in the Hadoop cluster so
that a given chunk exists on three different nodes.
Although physically chunked up and distributed in
triplicate, all of the interactions with the file on HDFS still
appeared as the same single file where it is copied into
HDFS initially. Thus, HDFS handles the entire computing
nodes, distributing and recombining the data.
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results  from  different  data  such  as  inverted  indices, Step 2. Sorting. In this stage, the input of reducer is
web document and different views and so on. grouped or sorted according to the key (because the
Map/Reduce programming model, by map and reduce output of different mapper may have the same key).
function  realize  the  Mapper  and  Reducer  interfaces. The two stages of Shuffle and Sort are synchronized;
They form the core of task. Step 3. Secondary Sorting. If the key grouping rule in

Mapper Phase: Map function requires the user to handle before reduce. It can provide a new method is defined
the input of a pair of < key, value> and produces a group i.e., Comparator. The comparator is used to group the
of intermediate key and value pairs. <key,value> consists intermediate keys for the second time.
of two parts, key stands for the "group number " of the
value. Value stands for the data related to the task. It Map tasks and Reduce task is a whole process, it
combines the intermediate values with same key using cannot be separated. It should be used together in the
sorting and then sends the output to the reduce function. program. It calls a MapReduce the process as an MR
Map algorithm process is described as follows: process. In an MR process, Map tasks run are improved

Step1. MapReduce framework produces a map task tasks can run serially. An MR process and the next MR
for each input and each graph input is generated by process can run in a sequential manner, synchronization
the Name Node job. Each <Key,Value> corresponds between these operations is guaranteed by the MR
to a map task. system. Let, G = {G ,G ,... , G } be a graph database, where
Step2. Execute Map task, process the input each G  G, i = {1... n} represents a labeled, undirected
<key,value> to produce a new <key,value>. This and connected graph. For a graph g, its size is defined as
process is called "divide into groups". That is, make the number of edges it contains. Now, t(g) = {G: g  G
the same values correspond to the same key words. G}, i =  {1...  n},  is  the  support-set  of  the  graph g
A given input value pair can be mapped into 0 or (here the subset symbol denotes a subgraph relation).
more output pairs. Output key value pairs that do not Thus, t(g) contains all the graphs in G that has a subgraph
required the same type of the input key value pairs. isomorphic to g. The cardinality of the support-set is
Step3. Mapper's output is sorted using the called    the   support   of  g. g   is   called   frequent   if
corresponding key value pairs and to be allocated to support = min, where min is predefined/user-specified
each Reducer.The  total  number  of  blocks  and  the minimum   support   (minsup)  threshold.  The  set of
number of job reduce tasks is same. frequent patterns are represented by F. Based on the size

Reduce Phase: Reduce function is also provided by the into a several disjoint sets, Fi such that each of the Fi
user and it always process after the map function which contains frequent patterns of size i only. 
handles the intermediate key pairs. Reduce function
mergers the values to get a small set of values the process Map/reduce Subgraph: Parallel frequent subgraph mining
is called "merge ". Reducer makes a group of intermediate (FSM) task, partitions the graph dataset G = {G } i=1...n
values    set    that    associated     with    the   same   key. into k disjoint partitions, such that each partition contains
In MapReduce framework <key,value> is the roughly equal number of graphs; thus it mainly distributes
communication interface for the programmer in Map the support counting subroutine of a frequent pattern
Reduce model. mining algorithm. Conceptually, each node of PSGM runs

For example,<key,value> can be seen as a "letter", an independent FSM task over a graph dataset which is
key is the letter’s posting address, value is the letter’s 1/k th of the size of |G|. The FSM algorithm is that PSGM
content. With the same address letters will be delivered to implements are an adaptation of the parallel algorithm.
the same place <key,value>, MapReduce framework can
automatically and accurately cluster the values with the Candidate Generation: Given a frequent pattern of size k,
same key together. Reducer algorithm process is it adjoins a frequent edge F1 with c to obtain a candidate
described as follows: pattern d of size k + 1. If d can add the additional vertex

Step1. Shuffle. The output from the sorted Mapper is is called a back edge; it connects two existing vertices of
used to give the input to the reducer. In this stage, c. Add the vertex of a forward edge is given an integer id,
MapReduce will assign related block for each which is the largest integer id following the ids of the
Reducer. existing vertices of c; thus the  vertex-id  stands  for  the

the intermediate process is different from its rule

and Reduce tasks run are improved, Map and Reduce

1 2 n

i

i i

(number of edges) of a frequent pattern, it can partition F

i

then the added edge is called a forward edge, otherwise it
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order in which the forward edges are adjoined while Data    Parallel: The   parallel    input    process   splits
building a candidate pattern. In graph mining, c is called the   input   graph  dataset  (G)   into   many   partitions.
the parent of d and d is a child of c, parent-child One straightforward partition scheme is to distribute the
relationship it can arrange the set of candidate patterns of graphs so that each partition contains the same number of
a mining task in a candidate generation tree. graphs from G. It works well for most of the datasets.

Duplicate Graph Checking: From multiple generation graphs in a dataset varies substantially, PSGM offers
paths a candidate pattern can be generated, but only one another splitting option in which the total number of
such path is explored during the candidate generation edges aggregated over the graphs in a partition, are close
step and the remaining unwanted paths are identified and to each other. In experiment section, it shows that the
subsequently ignored. A graph mining algorithm needs to latter partition scheme it improves the load-balancing
solve the graph isomorphism task, as the duplicate copies factor of a Map-Reduce job for improving the
of a candidate patterns are isomorphic to each other is performance. For PGSM, an important tuning parameter is
used    to   identify   invalid candidate  generation  paths. said to be the number of partition. In experiment section,
A well-known method for identifying graph common it  also  show  that  for  achieve  the  optimal  performance,
sharing  is    to    use    canonical    coding   scheme, the number of partitions for PSGM should be
which serializes the edges of a graph using a prescribed substantially larger than the number of partition in a
order and generates a string such that all isomorphic typical Map-Reduce task.
graphs will generate the same string. There are many
different canonical coding schemes; one of the main Data Allocation: The mappers in this phase prepare some
methods   is   min-dfs-code.  According  to  the  scheme, partition specific data structures such that for each
the generation path of a pattern in which the insertion partition   there  is  a  distinct  copy   of   these   data
order of the edges matches with the edge ordering in the structures. The  first  of  such  data  structure  is  called
min-dfs-code is considered as the valid generation path edge-extension-map, which is used for any candidate
and the remaining generation paths are considered as generation that happens over the entire mining session.
duplicate and hence ignored. They are static for a partition in the sense that they are

Support Value: Support value of a graph pattern g is The mappers in the preparation phase also start the
important because it is used to determine whether g is mining task by emitting the frequent single edge pattern
frequent or not. To count g’s support it need to find the as the key-value pair. It stores the possible extension from
database graphs in which g is embedded. This mechanism a vertex considering the edges that exists in the graphs of
requires  solving  a  sub-graph  isomorphism  problem, a partition. Note that, all the single edges can exist in any
which   is  NP-complete.  One   feasible  way  to  compute graph of any partition is frequent since the partition phase
the support of a pattern without explicitly performing the has filtered out all the infrequent edges. As mentioned
sub-graph isomorphism test across all database graphs is earlier, the key of a pattern is its min-dfs-code and the
to maintain the occurrence-list (OL) of a pattern; such a value is the pattern object. Each pattern object has four
list stores the embedding of the pattern (in terms of vertex essential attributes: (a) Occurrence List (OL) that stores
id) in each of the database graphs where the pattern the embedding of the pattern in each graph in the
exists. When a pattern is extended to obtain a child partition, (b) Right-Most-Path (c) VSET that stores the
pattern in the candidate generation step, the embedding embedding of the Right Most Path in each graph in the
of the child pattern must include the embedding of the partition and (d) support value. Mappers in the
parent pattern, thus the occurrence-list of the child preparation phase compute the min-dfs-code and create
pattern can be generated efficiently from the occurrence the pattern object for each single-edge patterns. 
list of its parent. Then the support of a child pattern can
be obtained trivially from its occurrence-list. Mining Algorithm: In this phase, mining process

Frequent Subgraph Mining: The proposed parallel data iteration. Data allocation phase populates all frequent
parallel, preparation phase and mining phase. In data subgraphs of size one and writes it in the distributed file
partition phase PSGM creates the partitions of input data system. Iterative job starts by reading these from HDFS.
the infrequent edges from the input graphs are removed. The map function of mining phase reconstructs all the
Preparation and mining phase performs the actual mining static data structures that are required to generate
task. candidate patterns from the current pattern.

However, for datasets where the size (edge count) of the

same    for    all   patterns   generated   from  a  partition.

discovers all possible frequent subgraphs through
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In the preparation phase each of the mappers of an cluster, where one of the node is set to be a master nodes
ongoing iteration is responsible for performing the mining and the remaining two nodes are set to serve as data
task over a particular chunk of the data written in HDFS. node. Each machine possesses a 3.1 GHz quad -core Intel
The mappers reconstruct the pattern object of size k along processor with 16GB memory and 1 TB of storage.
with the static data structures and generate the
candidates from the current pattern. Use Java to write the
baseline mining algorithm as well as the map and the
reduce function in the preparation and the mining phase.
It overrides the default input reader and writes a custom
input reader for the preparation phase. To improve the
execution time of MapReduce job, it compresses the data
while writing them in HDFS. We used global counter
provided by Hadoop to track the stopping point of the
iterative mining. 

Algorithm: Data Allocation
Allocation data(D):
1. create a data directory in distributed file system
2. partition = create partition()
3. while data available in D
4. Allocate each split in different mapper
5. write partition to file allocation in data directory

Mining Algorithm
 key = offset
 value = location of partition file in data directory
Mapper Data Allocation( key, value):
1. Generate Level one OL(value)
2. P = get single length patterns()
3. Generate Level one MAP(value)
4. forall Pi in P:
5. intermediate value = serialize(Pi)
6. intermediate key = min-dfs-code(Pi )
7. emit(intermediate key,intermediate value)
key = min-dfs-code

 values = List of Byte-stream of a pattern object in all
partitions Reducer preparation(Text key, BytesWritable h
values i):

1. for all value in values:
2. write to file(key,value)

RESULTS AND DISCUSSION

The parallel frequent subgraph mining algorithm task
is on the large graph datasets. As input, it used real-world
graph datasets which are taken from an online and also
synthetic    datasets   using   a  tool  called  Graph-gen.
The number of graphs in these datasets range from 100K
to 1000K and each graph contains on average 25-30
edges. It conducts all experiments in a 10-nodes Hadoop

Table 1: Compare runtime vs Support value for YEAST Dataset

Support value
--------------------------------------------------------------------------

Algorithm 30 50 70 80 90 100

FSM-H 84 75 65 56 45 42
PSGM 76 63 57 44 32 20

Fig. 3: Performance comparison of the traditional FSM-H
and PSGM.

Table 1: Compare no of reducer vs Support value for YEAST Dataset

Support value
------------------------------------------------------------------------

Algorithm 2 4 6 8 10 12

FSM-H 120 104 98 84 75 65
PSGM 97 83 79 65 57 49

Fig. 4: Performance comparison of no of reducer the
traditional FSM-H and PSGM.

CONCLUSION AND FUTURE WORK

The proposed system uses parallel iterative
MapReduce -based parallel frequent subgraph mining
algorithm, called PSGM. It shows the performance of
PSGM over real life and large synthetic datasets for
various system and input configurations. It also compares
the execution time of PSGM with an existing method,
which shows that PSGM is significantly better than the
existing method. Although it shows a novel approach  to
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subgraph mining that has promising results, due to limited 13. Chen, G.P., Y.B. Yang and Y. Zhang, 2012.
facilities, further work will be needed to fully understand “Mapreduce-based balanced mining for closed
the scalability of the method. frequent itemset,” in IEEE 19  International
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