
Middle-East Journal of Scientific Research 24 (Techniques and Algorithms in Emerging Technologies): 502-506, 2016
ISSN 1990-9233;
© IDOSI Publications, 2016
DOI: 10.5829/idosi.mejsr.2016.24.TAET23631

Corresponding Author: S.I. Nivetha, PG Scholar (CSE), Anna University Regional Campus, Coimbatore, India.
502

Big Log Search and Analysis Using Elk Environment

S.I. Nivetha and S.J. Preethi1 2

PG Scholar (CSE), Anna University Regional Campus, Coimbatore, India1

Assistant Professor (CSE), Anna University Regional Campus, Coimbatore, India2

Abstract: The collection of log record becomes more important for any website. Because collecting these log
records are used to understand trends for improving the site or making marketing/management decisions.
Most of the companies are trying to reduce the amount of time required to access fresh information. The best
solution is to develop real-time analytics systems along the log data collection. But collecting and analyzing
big log based information of internet monsters like Twitter, facebook is not an easy one. And the traditional
databases cannot hold huge amount of data and access the data in an efficient manner. This paper provides
the real time search and analysis of big log using elastic search, which is the modern search engine based on
Lucene. This paper presents a real-time big data search method: First, Logstash for huge log data collection;
then Elasticsearch for search solution and storage; finally Kibana for visualization. The paper mainly focused
on how to collect big data log and make it available to both analytics and search in near real time without using
any Hadoop eco system unlike Hbase as NoSQL data base. Hbase is replaced by Elasticsearch.
As Elasticsearch itself has a storage in NoSQL pattern. More over as it is distributed system
(Master-Slave architecture).

Key wrods: Elastic Search Big Data Logstash Realtime search Kibana

INTRODUCTION of billions of log events into Oracle database, then Oracle

In this era, hundreds of millions of computers and performance gets lower and some of the feature of SQL
mobile devices are constantly creating a surprising will be lost.
amount of information, which includes both human Existing centralized search engine from such a mass
beings, but also a variety of other things. Moreover, of information really needs to quickly retrieve the
this information will only accelerate creation continues, information is becoming more and more difficult, so the
not stagnation. Change is so great that the last decade we search engine system should have distributed processing
Computational tools used has no ability to meet these capabilities, according to the need to deal with the growth
new challenges. of information, constantly expanding size of the system to

However, this does not mean that we can enhance the system's ability to process information.
only sit still; contrary, Like Google, Yahoo!, Amazon and Therefore, building a distributed search engine becomes
other Internet giants Facebook and well-being Growing very meaningful.
number of start-ups, as presented, we can adopt with a Time is money. If we want to search and analyze the
completely different approach to solve the database, log in real time, it will give oracle cluster big pressure.
data storage and other. Computer information processing From the experience from Internet Company like Facebook
issues and these major technological innovations and Yahoo, traditional RMDBS cannot process so big
Occurred in the Internet to provide consumers with data in a reasonable response time.
services. Elastic Search is a construct based on Lucene open

There is billions of log events generated every day in source, distributed, RESTful search engine. Designed for
giant company. Mining the business value from the big cloud computing, to achieve real-time search, stable,
log is a big challenge because traditional technology reliable, fast, easy to install. Support for data using JSON
cannot scale so much. For example, if we load thousands over HTTP index.

cluster is necessary. If the Oracle cluster scales, then the

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 502-506, 2016

503

Logstash is a tool for managing logs. It supports Collecting the log evens in real time is the first step
virtually any type of log, including system logs, for searching and analyzing. During this test, Logstash is
error logs and custom application logs. It can receive used to do the job.
logs from numerous sources, including syslog, messaging Although this paper is about real time search,
(for example, rabbitmq) and jmx and it can output data in actually it can be viewed as a starting entry of near real
a variety of ways, including email, web sockets and to time OLAP system of big data. Kibana is such example
Elasticsearch. that can make sense of a mountain of logs. Kibana helps

Elasticsearch is a full-text, real-time search and you to chart it and rank it and play with the numbers.
analytics engine that stores the log data indexed by Kibana is a highly scalable interface for Logstash and
Logstash. It is built on the Apache Lucene search engine ElasticSearch that allows you to efficiently search, graph,
library and exposes data through REST and Java APIs. analyze and otherwise make sense of a mountain of logs.
Elasticsearch is scalable and is built to be used by For Kibana and Logstash, all the log events are stored
distributed systems. back up to ElasticSearch; by default the index are based

Kibana is a web-based graphical interface for on files. If its memory based, then the performance
searching, analyzing and visualizing log data stored in the definitely improves a lot so that Kibana itself can be used
Elasticsearch indices. It utilizes the REST interface of an OLAP for log management.
Elasticsearch to retrieve the data and not only enables Kibana data is located in local file system; while in
users to create customized dashboard views of their data, our experiment projects all log data are stored in hbase,
but also allows them to query and filter the data in an ad only index itself in stored in local file system. It means
hoc manner. more log data can be processed compared to Kibana.,

We have established a Web site or application and it good to mention that integrated with machine learning
want to add a search function, so we hit that: the search and data mining, OLAP of big data can bring even more
is very difficult. We want our search solution to be fast, value. There are some example applications of big
we want to have a zero configuration and a completely data: Precision Marketing, Genetic Engineering,
free search mode, we want to be able to simply using Climate Prediction etc.
JSON over HTTP index data, we want our search server is
always available, we hope to one Taiwan began and System Design Points: Logstash collects log events from
extended to hundreds, we want real-time search, we want end user machine.
simple multi-tenant, we hope to build a cloud solution. At logstash side, it collects log based events into
Elasticsearch designed to address all these issues and ElasticSearch; ElasticSearch plugin is used to analyze the
more. log events and index each log event into ElasticSearch

Lucene is the de facto standard search engine of cluster. Figure 1 shows how the log events are collected,
many internet companies. It’s like the engine of a car but indexed and stored from twitter Application. Logstash is
it’s not suitable for big data and cloud environment a tool for receiving, processing and outputting logs. All
computation. Solr and ElasticSearch are both based on kinds of logs. System logs, webserver logs, error logs and
Lucene; both of them are open source project. Solr is for application logs.
standalone application. ElasticSearch is designed for Using Elasticsearch as a backend datastore and
modern, cloud environment. kibana as a frontend reporting tool, Logstash acts as the

Best of all the features of ElasticSearch is the nearly workhorse, creating a powerful pipeline for storing,
real time search. Although it’s implemented in Java,
there are many clients are supported like PHP, Ruby, Perl,
Scala, Python,. NET, JavaScript, Erlang and Clojure.
Django, Couchbase and SearchBox are integrated into
ElasticSearch. MongoDB, CounchDB, RabbitMQ, RSS,
Sofa, JDBC, FileSystem, Dropbox, ActiveMQ, LDAP,
Amazon, SQS, St9, OAI and

Twitter can be imported into Solr directly. Zookeeper
and internal Zen Discovery can be used for automatic
node discovery. All the shards and replicas can move to
any node of the ElasticSearch cluster. The indexes can
routine to any of the shards if you want to. And it’s
RESTful architecture. Fig. 1: log events collecting and indexing flow

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 502-506, 2016

504

querying and analyzing your logs. With an arsenal of PUT /{index}/{type}/{id}
built-in inputs, filters, codecs and outputs, you can {
harness some powerful functionality with a small amount "field": "value",
of effort. ...

}
Data Structure and Algorithm: One of the reasons that
object-oriented programming languages are so popular is For example, if our index is called website, our type is
that objects help us represent and manipulate real-world called blog and we choose the ID 123, then the index
entities with potentially complex data structures. request looks like this:

The problem comes when we need to store these
entities. Traditionally, we have stored our data in columns PUT /website/blog/123
and rows in a relational database, the equivalent of using {
a spreadsheet. All the flexibility gained from using objects "title": "My first blog entry",
is lost because of the inflexibility of our storage medium. "text": "Just trying this out...",

But what if we could store our objects as objects? "date": "2014/01/01"
Instead of modeling our application around the limitations }
of spreadsheets, we can instead focus on using the data. Elasticsearch responds as follows:
The flexibility of objects is returned to us. {

An object is a language-specific, in-memory data "_index": "website",
structure. To send it across the network or store it, we "_type": "blog",
need to be able to represent it in some standard format. "_id": "123",
JSON is a way of representing objects in human-readable "_version": 1,
text. It has become the de facto standard for exchanging "created": true
data in the NoSQL world. When an object has been }The response indicates that the indexing request
serialized into JSON, it is known as a JSON document. has been successfully created and includes the _index,

Elasticsearch is a distributed document store. It can _type and _id metadata and a new element: _version.
store and retrieve complex data structures-serialized as As we want to support full text search, so we need to
JSON documents-in real time. In other words, as soon as index every part of log events; but at the same time,
a document has been stored in Elasticsearch, it can be log events can be abandoned after a certain time.
retrieved from any node in the cluster. Of course, we don’t The ElasticSearch schema is designed as below.
need to only store data; we must also query it, en masse {
and at speed. While "_default_": { "_ttl": { //Default TTL is 6 months.

NoSQL solutions exist that allow us to store objects "enabled": true,
as documents, they still require us to think about how we "default": 7776000000
want to query our data and which fields require an index },
in order to make data retrieval fast. "_source": {

In Elasticsearch, all data in every field is indexed by "enabled": false
default. That is, every field has a dedicated inverted index },
for fast retrieval. And, unlike most other databases, it can "properties": { "env": { //whole env is used as term
use all of those inverted indices in the same query, in Lucene. "type": "string",
to return results at breathtaking speed. "index": "not_analyzed"

Documents are indexed—stored and made },
searchable—by using the index API. But first, we need to "eventbody": { //log event body is indexed. "type":
decide where the document lives. As we just discussed, "string"
a document’s _index, _type and _id uniquely identify the },
document. We can either provide our own _id value or let "hostname": {
the index API generate one for us. "type": "string",

If the document has a natural identifier (for example, "index": "not_analyzed"
a user_account field or some other value that identifies },
the document), you should provide your own _id, using "logfilename": {
this form of the index API: "type": "string",

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 502-506, 2016

505

"index": "not_analyzed"
},
"logpath": {
"type": "string",
"index": "not_analyzed"
},
"logtype": {
"type": "string",
"index": "not_analyzed"
},
"timestamp": { //timestamp and nanotime are used for

sorting "type": "long",
}
"ignore_malformed": false
},
"nanotime": {
"type": "long",
"ignore_malformed": false
}
}
}

Test Environments: Because there is not enough finance
to support our research, we created virtual machines
based on our hardware.

Although commodity hardware can be enough for
Hadoop, it’s better to use more powerful server in
production environment. It’s necessary to use powerful
hardware for ElasticSearch.

Table 1: Hardware test environment.
Elasitc Search Server
NO of CPUs 4
CPU frequency 2.67 G
Memory 8G
HardDisk Size 100G
NO of ES servers 3
JVM Heap Size of ES 6G
shards 5
replica 0

Table 2: test result matrix
Total_ Total_Matc Wanted_ Search Time
Events_ NO hed_ Events LOG_ EVENTS (Seconds)
148928992 4375 25 6
148928992 4375 100 10
148928992 4375 500 19
148928992 4375 1500 34
148928992 4375 2000 26
148928992 4375 2500 51
148928992 4375 3000 63
148928992 4375 3500 46

Fig. 2: Test result chart.

Test Result Matrix: During this experiment, we load
enough log events for just one log file and caching is
disabled because we want to compared the real search
performance. The log file size is 7GB and there are
148928992 log events. We want to search the keyword
bigdata?, the number of total matched log events are 4375.
If we just want to get the first 25 matched log events,
it will takes 6 seconds as you can see in Table 2.

Test Result Chart: Table 2 is visualized as below Figure.
We can get some obvious conclusions based on the chart
as in Figure 3.

CONCLUSIONS

According to the algorithm and experimental data,
the paper is summarized as follows:

From the test result and the matrix we can get that
Log events can be collected in real time by logstash; Log
events can be indexed and searched out using
ElasticSearch nearly in real time; With more log events it
responds in a reasonable time, this is the feature we want;
Of course if more powerful server are in place, the
performance is definitely going better.

Elasticsearch Ecosystem and Lucene can be viewed
as open source implementations of some of Google
systems. We should keep an eye on the latest
publications from Google, FaceBook and other internet
company to get better idea regarding our goal.

In memory distributed DB and Index engine can be
used together to do OLAP for big data. More and more
matured products like SAP HANA are emerging in market.

ACKNOWLEDGMENT

First, I thank the technology developed, so that we
can faster data processing, thanks to their predecessors
for technological development efforts, thanked the experts
put forward many valuable exchange of experience,
without your support, I can not finish this article work.

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 502-506, 2016

506

Secondly, I want to thank my project guide of the 8. Schmuck, F. and R. Haskin, 2002.
CSE department Mrs.J.PREETHI, AP/CSE who guided me GPFS: A Shared-Disk File System for Large
throughout this project. Computing Clusters,? Proceedings of FAST ’02: 1

REFERENCES (USENIX Association, 2002), pp: 231-244.

1. Tom White, Hadoop: The Definitive Guide?, C. Maltzahn, 2006. Ceph: A Scalable,
Published by O’Reilly Media, Inc., 1005 Gravenstein High-Performance Distributed File System,?
Highway North, Sebastopol, CA 95472, pp: 357-377. Proceedings of OSDI ’06: 7 Conference on

2. Lars George, HBase: The Definitive Guide?, Operating Systems Design and Implementation
Published by O’Reilly Media, Inc., 1005 Gravenstein (USENIX Association, 2006).
Highway North, Sebastopol, CA 95472, pp: 41-73. 10. Welch, B., M. Unangst, Z. Abbasi, G. Gibson,

3. Michael McCandless, Eric Hatcher and B. Mueller, J. Small, J. Zelenka and B. Zhou, 2008.
Otis Gospodnetic, Lucene In Action? 2cd ed., Special Scalable Performance of the Panasas Parallel
Sales Department Manning Publications Co. 180 File System,? Proceedings of FAST ’08:
Broad St. Suite 1323 Stamford, CT 06901, pp: 2-110. 6 Conference on File and Storage Technologies

4. David Smiley and Eric Pugh, Solr 1.4 Enterprise (USENIX Association, 2008), pp: 17-33.
Search Server?, Published by Packt Publishing Ltd. 11. viktor mayer-schonberger and kenneth cukier,
32 Lincoln Road Olton Birmingham, B27 6PA, K, ig data: a revolution that will transform how we live,
pp: 280-281. work and think,? eamon dolan/houghton mifflin

5. Yair Sovran, et al., 2011. Transactional storage for harcourt; 1 edition (march 5, 2013), pp: 28-69.
Georeplicated systems?. Proc. of SOSP., pp: 385-400. 12. Sergey Melnik, Andrey Gubarev, Jing Jing Long,

6. Michael Stonebraker, et al., The end of an Geoffrey Romer, Shiva Shivakumar, Matt Tolton,
Architectural era: (it’stime for a completerewrite)?. Theo Vassilakis Google, Inc. Dremel: Interactive
Proc. of VLDB. 2007, pp: 1150-1160. Analysis of WebScale Datasets?

7. Ashish Thusoo, et al., 2010. Hive-A Petabyte Scale 13. Dean, J., 2009. Challenges in Building Large-Scale
Data Warehouse Using Hadoop?. Proc. of ICDE., Information Retrieval Systems: Invited Talk.
pp: 996-1005. In WSDM.

st

Conference on File and Storage Technologies

9. Weil, S., S. Brandt, E. Miller, D. Long and

th

th

14. Abadi, D.J., P.A. Boncz and S. Harizopoulos, 2009.
Column-Oriented Database Systems. VLDB, 2(2).

