
Middle-East Journal of Scientific Research 24 (Techniques and Algorithms in Emerging Technologies): 420-424, 2016
ISSN 1990-9233;
© IDOSI Publications, 2016
DOI: 10.5829/idosi.mejsr.2016.24.TAET23350

Corresponding Author: Mrs. I. Nivetha, PG Scholar (CSE), Anna University Regional Campus, Coimbatore, India.
420

Big Log Search and Analysis Using Elk Environment

Mrs. I. Nivetha and Mrs. J. Preethi1 2

PG Scholar (CSE), Anna University Regional Campus, Coimbatore, India1

Assistant Professor (CSE), Anna University Regional Campus, Coimbatore, India2

Abstract: The collection of log record becomes more important for any website. Because collecting these log
records are used to understand trends for improving the site or making marketing/management decisions.
Most of the companies are trying to reduce the amount of time required to access fresh information. The best
solution is to develop real-time analytics systems along the log data collection. But collecting and analyzing
big log based information of internet monsters like Twitter, facebook is not an easy one. And the traditional
databases cannot hold huge amount of data and access the data in an efficient manner. This paper provides
the real time search and analysis of big log using elastic search, which is the modern search engine based on
Lucene. This paper presents a real-time big data search method: First, Logstash for huge log data collection;
then Elasticsearch for search solution and storage; finally Kibana for visualization. The paper mainly focused
on how to collect big data log and make it available to both analytics and search in near real time without using
any Hadoop eco system unlike Hbase as NoSQL data base. Hbase is replaced by Elasticsearch.
As Elasticsearch itself has a storage in NoSQL pattern. More over as it is distributed system
(Master-Slave architecture).

Key words: Elastic Search Big Data Logstash Realtime search Kibana

INTRODUCTION of billions of log events into Oracle database, then Oracle

In this era, hundreds of millions of computers and performance gets lower and some of the feature of SQL
mobile devices are constantly creating a surprising will be lost.
amount of information, which includes both human Existing centralized search engine from such a mass
beings, but also a variety of other things. Moreover, of information really needs to quickly retrieve the
this information will only accelerate creation continues, information is becoming more and more difficult, so the
not stagnation. Change is so great that the last decade we search engine system should have distributed processing
Computational tools used has no ability to meet these capabilities, according to the need to deal with the growth
new challenges. of information, constantly expanding size of the system to

However, this does not mean that we can enhance the system's ability to process information [2].
only sit still; contrary, Like Google, Yahoo!, Amazon and Therefore, building a distributed search engine becomes
other Internet giants Facebook and well-being Growing very meaningful.
number of start-ups, as presented, we can adopt with a Time is money. If we want to search and analyze the
completely different approach to solve the database, log in real time, it will give oracle cluster big pressure.
data storage [1] and other. Computer information From the experience from Internet Company like Facebook
processing issues and these major technological and Yahoo, traditional RMDBS cannot process so big
innovations Occurred in the Internet to provide data in a reasonable response time.
consumers with services. Elastic Search is a construct based on Lucene [3]

There is billions of log events generated every day in open source, distributed, RESTful search engine.
giant company. Mining the business value from the big Designed for cloud computing, to achieve real-time
log is a big challenge because traditional technology search, stable, reliable, fast, easy to install. Support for
cannot scale so much. For example, if we load thousands data using JSON over HTTP index.

cluster is necessary. If the Oracle cluster scales, then the

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 420-424, 2016

421

Logstash is a tool for managing logs. It supports Elastic Search cluster. The indexes can routine to any
virtually any type of log, including system logs, of the shards if you want to. And it’s RESTful architecture
error logs and custom application logs. It can receive [7].
logs from numerous sources, including syslog, messaging Collecting the log evens in real time is the first step
(for example, rabbitmq) and jmx and it can output data in for searching and analyzing. During this test, Logstash is
a variety of ways, including email, web sockets and to used to do the job.
Elasticsearch. Although this paper is about real time search,

Elasticsearch is a full-text, real-time search and actually it can be viewed as a starting entry of near real
analytics engine that stores the log data indexed by time OLAP system of big data. Kibana is such
Logstash. It is built on the Apache Lucene search engine example that can make sense of a mountain of logs.
library and exposes data through REST and Java APIs. Kibana helps you to chart it and rank it and play with the
Elasticsearch is scalable and is built to be used by numbers. Kibana is a highly scalable [8, 9] interface for
distributed systems. Logstash and ElasticSearch that allows you to efficiently

Kibana is a web-based [4] graphical interface for search, graph, analyze and otherwise make sense
searching, analyzing and visualizing log data stored in the of a mountain of logs. For Kibana and Logstash, all the
Elasticsearch indices. It utilizes the REST interface of log events are stored back up to ElasticSearch; by default
Elasticsearch to retrieve the data and not only enables the index are based on files. If its memory based,
users to create customized dashboard views of their data, then the performance definitely improves a lot so that
but also allows them to query and filter the data in an ad Kibana itself can be used an OLAP for log
hoc manner. management.

We have established a Web site or application and Kibana data [10] is located in local file system; while
want to add a search function, so we hit that: the search in our experiment projects all log data are stored in hbase
is very difficult. We want our search solution to be fast, [11], only index itself in stored in local file system. It
we want to have a zero configuration and a completely means more log data can be processed compared to
free search mode, we want to be able to simply using Kibana., it good to mention that integrated with machine
JSON over HTTP index data, we want our search server learning and data mining, OLAP of big data can bring
[5] is always available, we hope to one Taiwan began and even more value. There are some example applications
extended to hundreds, we want real-time search, we want of big data: Precision Marketing, Genetic Engineering,
simple multi-tenant, we hope to build a cloud solution. Climate Prediction etc.
Elasticsearch designed to address all these issues and
more. System Design Points: Logstash collects log events from

Lucene is the de facto standard search engine of end user machine.
many internet companies. It’s like the engine of a car but At logstash side, it collects log based events into
it’s not suitable for big data and cloud environment ElasticSearch; ElasticSearch plugin is used to analyze the
computation. Solr and ElasticSearch are both based on log events and index each log event into ElasticSearch
Lucene; both of them are open source project. Solr is for cluster. Figure 1 shows how the log events are collected,
standalone application. ElasticSearch is designed for indexed and stored from twitter Application. Logstash is
modern, cloud environment.

Best of all the features of ElasticSearch is the nearly
real time search. Although it’s implemented in Java,
there are many clients are supported like PHP, Ruby, Perl,
Scala, Python,. NET, JavaScript, Erlang and Clojure.
Django, Couchbase and SearchBox are integrated into
ElasticSearch. MongoDB, CounchDB, RabbitMQ, RSS,
Sofa, JDBC, FileSystem [6], Dropbox, ActiveMQ, LDAP,
Amazon, SQS, St9, OAI and Twitter can be imported
into Solr directly. Zookeeper and internal Zen
Discovery can be used for automatic node discovery.
All the shards and replicas can move to any node of the Fig. 1: log events collecting and indexing flow

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 420-424, 2016

422

a tool for receiving, processing and outputting logs. _index, _type and _id uniquely identify the document.
All kinds of logs. System logs, webserver logs, error logs We can either provide our own _id value or let the index
and application logs. API generate one for us.

Using Elasticsearch as a backend datastore and If the document has a natural identifier (for example,
kibana as a frontend reporting tool, Logstash acts as the a user_account field or some other value that
workhorse, creating a powerful pipeline for storing, identifies the document), you should provide your own
querying and analyzing your logs. With an arsenal of _id, using this form of the index API:
built-in inputs, filters, codecs and outputs, you can
harness some powerful functionality with a small amount PUT /{index}/{type}/{id}
of effort. {

 "field": "value",
Data Structure and Algorithm: One of the reasons that ...
object-oriented programming languages are so popular is }
that objects help us represent and manipulate real-world For example, if our index is called website, our type is
entities with potentially complex data structures. called blog and we choose the ID 123, then the index

The problem comes when we need to store these request looks like this:
entities. Traditionally, we have stored our data in columns PUT /website/blog/123
[12] and rows in a relational database, the equivalent of {
using a spreadsheet. All the flexibility gained from using "title": "My first blog entry",
objects is lost because of the inflexibility of our storage "text": "Just trying this out...",
medium. "date": "2014/01/01"

But what if we could store our objects as objects? }
Instead of modeling our application around the limitations Elasticsearch responds as follows:
of spreadsheets, we can instead focus on using the data. {
The flexibility of objects is returned to us. "_index": "website",

An object is a language-specific, in-memory data "_type": "blog",
structure. To send it across the network or store it, "_id": "123",
we need to be able to represent it in some standard format. "_version": 1,
JSON is a way of representing objects in human-readable "created": true
text. It has become the de facto standard for exchanging }
data in the NoSQL world. When an object has been
serialized into JSON, it is known as a JSON document. The response indicates that the indexing request has

Elasticsearch is a distributed document store. It can been successfully created and includes the _index, _type
store and retrieve complex data structures— serialized as and _id metadata and a new element: _version.
JSON documents—in real time. In other words, as soon As we want to support full text search, so we need to
as a document has been stored in Elasticsearch, it can be index every part of log events; but at the same time,
retrieved from any node in the cluster. Of course, we don’t log events can be abandoned after a certain time.
need to only store data; we must also query it, en masse The ElasticSearch schema is designed as below.
and at speed. While

NoSQL solutions exist that allow us to store objects {
as documents, they still require us to think about how we "_default_": { "_ttl": { //Default TTL is 6 months.
want to query our data and which fields require an index "enabled": true,
in order to make data retrieval fast. "default": 7776000000

In Elasticsearch, all data in every field is indexed by },
default. That is, every field has a dedicated inverted index "_source": {
for fast retrieval. And, unlike most other databases [13], it "enabled": false
can use all of those inverted indices in the same },
query, to return results at breathtaking speed. "properties": { "env": { //whole env is used as term

Documents are indexed-stored and made searchable- in Lucene. "type": "string",
by using the index API. But first, we need to decide where "index": "not_analyzed"
the document lives. As we just discussed, a document’s },

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 420-424, 2016

423

"eventbody": { //log event body is indexed. "type":
"string"

},
"hostname": {
"type": "string",
"index": "not_analyzed"
},
"logfilename": {
"type": "string",
"index": "not_analyzed"
},
"logpath": {
"type": "string",
"index": "not_analyzed"
},
"logtype": {
"type": "string",
"index": "not_analyzed"
},
"timestamp": { //timestamp and nanotime are used for

sorting "type": "long",
}
"ignore_malformed": false
},
"nanotime": {
"type": "long",
"ignore_malformed": false
}
}
}

Test Environments: Because there is not enough finance
to support our research, we created virtual machines
based on our hardware.

Although commodity hardware can be enough for
Hadoop, [14, 15] it’s better to use more powerful server in
production environment. It’s necessary to use powerful
hardware for ElasticSearch.

Table 1: Hardware test environment.

Elasitc Search Server

NO of CPUs 4
CPU frequency 2.67 G
Memory 8G
HardDisk Size 100G
NO of ES servers 3
JVM Heap Size of ES 6G
shards 5
replica 0

Table 2: test result matrix
Total_ Total_Matc Wanted_LOG_ SearchTime
Events_ NO hed_ Events EVENTS (Seconds)
148928992 4375 25 6
148928992 4375 100 10
148928992 4375 500 19
148928992 4375 1500 34
148928992 4375 2000 26
148928992 4375 2500 51
148928992 4375 3000 63
148928992 4375 3500 46

Fig. 2: Test result chart.

Test Result Matrix: During this experiment, we load
enough log events for just one log file and caching [16] is
disabled because we want to compared the real search
performance. The log file size is 7GB and there are
148928992 log events. We want to search the keyword
¯bigdata?, the number of total matched log events are
4375. If we just want to get the first 25 matched log
events, it will takes 6 seconds as you can see in Table 2.

Test Result Chart: Table 2 is visualized as below Figure.
We can get some obvious conclusions based on the chart
as in Figure 3.

CONCLUSIONS

According to the algorithm and experimental data,
the paper is summarized as follows:

From the test result and the matrix we can get that
Log events can be collected in real time by logstash;
Log events can be indexed and searched out using
ElasticSearch nearly in real time; With more log events it
responds in a reasonable time, this is the feature we want;
Of course if more powerful server are in place,
the performance is definitely going better.

Elasticsearch Ecosystem and Lucene can be viewed
as open source implementations of some of Google
systems. We should keep an eye on the latest
publications from Google, FaceBook and other internet
company to get better idea regarding our goal.

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 420-424, 2016

424

In memory distributed DB and Index engine can be 7. Michael Stonebraker, et al., 2007. The end of an
used together to do OLAP for big data. More and more Architectural era: (it’stime for a completerewrite)?.
matured products like SAP HANA are emerging in market. Proc. of VLDB., pp: 1150-1160.

ACKNOWLEDGMENT C. Maltzahn, 2006. Ceph: A Scalable,

First, I thank the technology developed, so that we Proceedings of OSDI ’06: 7 Conference on
can faster data processing, thanks to their predecessors Operating Systems Design and Implementation
for technological development efforts, thanked the experts (USENIX Association, 2006).
put forward many valuable exchange of experience, 9. Small, J. Zelenka and B. Zhou, ?Scalable Performance
without your support, I can not finish this article work. of the Panasas.

Secondly, I want to thank my project guide of the 10. viktor mayer-schonberger and kenneth cukier, 2013.
CSE department Mrs.J.PREETHI, AP/CSE who guided me ¯ig data: a revolution that will transform how we live,
throughout this project. work and think,? eamon dolan/houghton mifflin

REFERENCES 11. Lars George, 0000. HBase: The Definitive Guide?,

1. Yair Sovran, et al., 2011. Transactional storage for Highway North, Sebastopol, CA 95472, pp: 41-73.
Georeplicated systems?. Proc. of SOSP, pp: 385-400. 12. Abadi, D.J., P.A. Boncz and S. Harizopoulos, 2009.

2. Dean, J., 2009. Challenges in Building Large-Scale Column-Oriented Database Systems. VLDB, 2(2).
Information Retrieval Systems: Invited Talk. 13. Database Systems. VLDB, 2(2), 2009.
In WSDM. 14. Tom White, 0000. Hadoop: The Definitive Guide?,

3. Michael McCandless, Eric Hatcher and Published by O’Reilly Media, Inc., 1005 Gravenstein
Otis Gospodnetic, 0000.Lucene In Action? 2cd ed., Highway North, Sebastopol, CA 95472, pp: 357-377.
Special Sales Department Manning Publications Co. 15. Ashish Thusoo, et al., 2010. Hive-A Petabyte Scale
180 Broad St. Suite 1323 Stamford, CT 06901, Data Warehouse Using Hadoop?. Proc. of ICDE.,
pp. 2-110 pp: 996-1005.

4. Inc.–Dremel: Interactive Analysis of WebScale 16. Parallel File System, Proceedings of FAST '08: 6
Datasets Conference on File and Storage Technologies

5. David Smiley and Eric Pugh, 0000. Solr 1.4 Enterprise (USENIX Association, 2008), pp: 17-33.
Search Server?, Published by Packt Publishing Ltd.
32 Lincoln Road Olton Birmingham, B27 6PA, K,
pp: 280-281.

6. Schmuck, F. and R. Haskin, 2002. GPFS:
A Shared-Disk File System for Large
Computing Clusters,? Proceedings of FAST ’02:
1 Conference on File and Storage Technologiesst

(USENIX Association, 2002), pp: 231-244.

8. Weil, S., S. Brandt, E. Miller, D. Long and

High-Performance Distributed File System,?
th

harcourt; 1 edition (march 5, 2013), pp: 28-69.

Published by O’Reilly Media, Inc., 1005 Gravenstein

th

