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Abstract: The problem of identifying in the order of duplicate records in databases is an essential step for data
cleaning and data integration methods. Most existing advances have relied on generic or manually tuned
distance metrics for estimating the similarity of potential duplicates. A variety of experimental methodologies
have been used to evaluate the accuracy of duplicate-detection systems. In this paper propose naive detection
algorithm by making intelligent  guesses  which  records  have  a  high  possibility  of  representing  the  same
real-world entity, the search space is reduced. An implement naive approach to be used as a baseline simply
generates all possible pairs of objects that are stored within the data source. Experiments show that the naive
algorithm is better than progressive duplicate detection and that the comprehensive algorithm to some extent
improves upon it in terms of efficiency (detected duplicates vs. overall number of comparisons).
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INTRODUCTION entity.   For   example,   due  to  various  errors   in   data

Duplicate detection is the problem of influential that product names in sales records may not match exactly
two different database entries  in  reality  represent  the with records in master product index tables. In these
same  real-world  entity  and  performing   this   detection situations, it would be desirable to match similar records
for   all  objects  corresponded  to  in   the   database. transversely relations. This difficulty of matching similar
“Duplicate detection" is also known as record relation, records has been studied in the context of record linkage
Entity classification, record matching and many other (e.g. [1-3]) and of identifying approximate duplicate
terms. It is a much researched problem with high entities in databases.
importance  in  the  areas  of  master  data  management, Several other practical issues arise when training
data warehousing and ETL, customer relationship adaptive duplicate-detection systems using machine
management and data integration. Duplicate detection learning. These include how to competently collect
must solve two intrinsic difficulties: Speedy discovery of effective training data for the system and how to correctly
all duplicates in large data sets (competence) and correct measure   overview   accuracy.   We  can  imagine  two
identification of duplicates and non-duplicates different    scenarios   in   which   machine   learning   can
(effectiveness). be used to recover duplicate detection. In the first

Data cleaning is a significant element for developing scenario, the goal is to use machine learning to develop a
effective business intelligence applications. The inability general duplicate-detection system modified to a specific
to make sure data quality can unconstructively affect type of data, such as mailing addresses or bibliographic
downstream data analysis and ultimately key business citations, but not modified to a specific database. In this
decisions. A very vital data cleaning operation is that of approach, the concluding databases to be cleaned are not
classifying records which match the same real world obtainable during the training phrase.  We  call   this   the

and to differences in gathering of representing data,



Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 291-296, 2016

292

“shrink-wrap” scenario, since the goal is to develop and parameterization problem. The focus differs: Xiao et al.
market a fixed “shrink-wrapped” software system that any find the top-k most similar duplicates regardless of how
user can be relevant to their own database without further long this  takes  by  weakening  the  similarity  threshold;
training. In the second scenario, the goal is to train a we find as many duplicates as possible in a given time.
system to clean a specific database and sample duplicate That these reproductions are also the most similar ones is
and  non-duplicate  pairs  from  this  database  be  capable a side effect of our approaches.
of be recognized by the user during the training phase. Pay-As-You-Go Entity Resolution established three
We call this the “consulting” position, since it seems kinds of progressive duplicate detection techniques,
most suitable under a business model where a company called “hints”. A hint defines a perhaps good
is employing to clean specific databases and trains the implementation order for the evaluations in order to match
software predominantly for each database. capable record pairs earlier than less capable record pairs.

In this paper he naive duplicate detection algorithm However, all presented hints produce fixed orders for the
simply   generates   all  possible  pairs  out  of  the  data, comparisons and neglect the chance to dynamically
but discards reflexive pairs (i.e. a pair that looks like [a, a] regulate the comparison order at runtime based on
containing two references of the same object instance) intermediate results. Some of our techniques directly
and symmetric pairs (i.e. [b, a] will be discarded, if [a, b] tackle this issue. Furthermore, the presented duplicate
was already generated). detection advances calculate a hint only for a specific

Related Work: Much research on duplicate detection [4], that fits into main memory. By implementation one
[5], also known as entity resolution and by many other separation of a huge dataset after another, the overall
names centers on pair selection algorithms that try to duplicate detection  process  is  no  longer  progressive.
maximize recollect on the one hand and effectiveness on This issue is only partly addressed, which proposes to
the other hand. The most important algorithms in this area calculate the hints using all partitions. The algorithms
are Blocking [6] and the sorted neighborhood method presented in our paper use a inclusive ranking for the
(SNM) [7]. Adaptive techniques. Preceding publications comparisons and consider the limited amount of available
on duplicate detection often focus on reducing the overall main memory. The third issue of the algorithms
runtime. Thereby, some of the proposed algorithms are established  by  Whang et  al.  relates  to   the   planned
already proficient of approximation the quality of pre-partitioning strategy: By using minhash signatures
comparison candidates [7]. The algorithms use this [12] for the partitioning, the partitions do not be related.
information to choose the evaluation candidates more However, such an overlap improves the pair-selection [13]
carefully. For the same reason, other advances exploit and thus our algorithms consider not be separating blocks
adaptive windowing techniques, which enthusiastically as well. In distinction, we also progressively solve the
adjust the window size depending on the amount of multi-pass method and transitive closure computation,
recently found duplicates [8], [9]. These adaptive which are critical for a completely progressive workflow.
techniques dynamically recover the effectiveness of Finally, we provide a more general estimate on
duplicate detection, but in distinction to our  progressive considerably larger datasets and employ a novel quality
techniques, they need to run for assured stages of  time measure to quantify the presentation of our progressive
and cannot maximize the efficiency for any given time slot. algorithms.

Progressive    techniques.    In   the   last  few  years, Additive techniques. By merging the sorted
the profitable need for progressive algorithms also neighborhood    method   with    blocking   techniques,
commenced    some   definite  studies   in   this   domain. pair-selection algorithms can be built that prefers the
For occurrence, pay-as-you-go algorithms for information comparison candidates much more precisely. The Sorted
combination on large scale datasets have been presented Blocks algorithm [13], for instance, applies blocking
[10]. Other works introduced progressive data cleansing techniques on a set of input records and then slides a
algorithms for the analysis of sensor data streams [11]. small window between the different blocks to select
However, these advances cannot be applied to duplicate further comparison candidates.
detection.

Xiao et al. proposed a top-k similarity join that uses Proposed Work: In this section the proposed algorithm
a particular index structure to estimation capable naive block partitioning are responsible for selecting pairs
evaluation candidates [11]. This approach progressively of records from the extractors that should be classified as
determines duplicates and also relieves the duplicate or non-duplicate. The naive supports that follow

separation, which is a (perhaps large) subset of records
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a pair-wise comparison pattern and it already provides a Preprocessor: The preprocessor is used to gather
increasing selection of such algorithms. An implemented statistics while extracting the data, e.g., counting the
naive approach to be used as a baseline generates all number of records or (dissimilar) values. After the
possible pairs of Entities that are stored within the data extraction phase, each preprocessor instance is available
source(s). Each pair is returned only once. So if (a, b) is within the algorithm and might be used within
already returned, (b, a) is not. This algorithm use comparators that need preprocessing information.
preprocessing, such as sorting for the Sorted
Neighborhood Process or partitioning for the Blocking Partitioning Algorithms: In this proposed system two
Method. Therefore, each algorithm can execute a admired families of methods for duplicate detection.
preprocessing step before returning record pairs. In case Blocking methods partition data into numerous blocks or
of sorting, naive allows the  definition  of  a  sorting  key. partitions and compare only tuples within a partition.
A sorting key collects a list of different sub-keys which Windowing methods on the other hand sort the data,
specify attributes or part of attribute values. The sorting slide a window transversely the arranged data and
can be executed by an in-memory (for small datasets) or compare only within the window.
by label based sorter.

Data Extractors: The data extractor element  is  used  to separating the set of tuples into disjoint partitions
extract data from any data source that is sustained by the (blocks) and then evaluating all pairs of tuples only within
toolkit and to alter the data into the internal JSON format. each block. Thus, the overall number of comparisons is
Currently, For each data extractor, a record identifier, greatly reduced; see Tab. 1 for an overview of the
consisting of one or many attributes, can be defined and computational difficulty of the different methods
furthermore a global ID is assigned to each data extractor, compared to the extensive approach of comparing all the
which     is  also   saved  within  the  removed  records. pairs of tuples. An important decision for the blocking
This allows a evaluation of records from different sources method is the choice of a good partitioning predicate,
without the essential of an extractor-wide unique which   establishes  the  number  and  size   of   the
identifier. partitions. They should be chosen in a manner that

Fig. 1: Naive Detection Architecture is   allocated  to  each  tuple.  The  key  does  not  have  be

Blocking: Blocking methods practice the simple idea of

possible duplicates  appear  in  the  same  partition.  E.g.,
for CRM functions a  typical  partitioning  is  by zip-code
or   by  the  first  few  digits   of   zip-codes.   If   two
duplicate tuples have maintained   the   same  zip  code,
they  appear  in  the same partition and thus can be
predictable as duplicates. Other  partitioning  might be
by    last   name   or    some  fixed-sized  pre   x   of   them,
by street name, by employer, etc. In broad, partitions of
generally same size are preferable. For simplicity we
imagine in the following that separations are of equal size.
Finally, a transitive closure is created over all detected
duplicates, because duplicity is intrinsically a transitive
relation and thus more correct duplicate pairs can be
reported.

To detect duplicates that change in the partitioning
attribute, a multi-pass method is in use for Blocking
methods to perform several runs, each time with a
different partitioning predicate.

Windowing: Windowing methods are vaguely more
detailed than blocking methods. The naive, which is
divided into three phases. In the first phase, a sorting key
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distinctive and can be produced by concatenating  values that are close to each other with deference to that order
(or   substrings   of   values)   from   dissimilar   attributes. have a higher chance of being duplicates than other pairs
In   the   second  phase,  all  tuples  are sorted  according of tuples.
to that key. As in the  blocking  method,  the  hypothesis To further compare naïve analyze the relationship
is that   duplicates  have  similar  keys  and   are   thus between    number of   blocks   b  and  window  size  w.
close   to   each  other  after  sorting.   The   first   two To achieve the same number of evaluations for both
phases are similar to the selection of a partitioning methods we calculate:
predicate   in   the   blocking   method.   The   final   phase
of   naive  slides  a  window  of    preset  size  across  the
sorted   list   of  tuples.  All  pairs  of  tuples  that  appear
in     the    same    window   are    evaluated.   The   size of (1)
the    window (typically   between   10     and   20)
represents the trade-off between efficiency and with n = 20 and w = 3 confirm that the partitioning
effectiveness; larger windows yield longer run-times but into 4 partitions approximately accomplishes the same
discover more duplicates. number of comparisons as the windowing method with

Duplicate   Comparator:   The   proposed  algorithm
reducing   the   number   of  comparisons  by  making Duplicate Detection: Windowing methods and blocking
intelligent guesses as to which   pairs   of   tuples have a are two extreme examples concerning the overlap of the
chance of being duplicates. Naive rely on some intrinsic partitions. Let U be the intersection between two
orderings of  the  data  and  the  assumption  that  tuples partitions P1 and P2, which we call.

window size 3:

Fig. 2: Comparing blocking and windowing

U  = P1 P2 (2) recognized. On the other hand, the overlap should not bep1,p2

u = |U  | (3) comparisons. The model be related depends on the datap1,p2

set and has to be determined manually for each use case.
In the best case when using separating methods, The basic scheme of the new Sorted Blocks method

tuples that are really true duplicates are assigned to the is to first sort all tuples so that duplicates are close in the
same partition. The model be related between two sort sequence, then separation the records into disjoint
partitions should be big enough, so that real duplicates sorted  sub-sets  and  finally  to  overlap  the  partitions.
that for any reason are not in the same partition are The size of the be related  can  be  defined  using  u,  e.g.,

too high, thus resulting in a large increase of record
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u = 3 means that three tuples of each neighboring for performance dimensions plot the total number of
partition are element of the overlap, which hence has a description duplicates over time. Each duplicate is a
total size of 2u. Within the overlap, a fixed size window positively matched record pair. For enhanced readability,
with size u + 1 is  slid  across  the  sorted  data  and  all we manually marked some facts points from the many
reports within  the  window  are  compared.  In  this  way, hundred measured data points that make up a graph.
the additional  complexity  of  the  be  related  is  linear.
Note that this windowing technique is used only in the
overlapping part; within a partition all pairs of tuples are
compared.

RESULTS AND DISCUSSION

The most proficient overlap-setting of u = 2 between
the partitions is selected experimentally. Compares the
results of  different  overlaps  with  u  =  2  as  a  baseline.
For each F-Measure-value the graphs show the least
number of additional comparisons necessary to achieve
that value. A first observation is that the graphs are
always above zero, so naive Blocks with overlap u > 2
needs more record comparisons than naive Blocks with u
= 2 to achieve the same F-Measure and is hence less
proficient. Another effect observes is that with an
increasing F-Measure, the number of additional
comparisons generally decreases. Because the F-Measure
depends on the recall and therefore on the number of
record evaluations, it can be increased with an increasing
partition size, but this reduces the effect of the overlap
between the partitions.

The CD-dataset1 contains various records about
music and audio CDs. The DBLP-dataset 2 is a
bibliographic index on computer science journals and
proceedings. In  contrast  to  the  other  two  datasets,
DBLP includes many, large groups of similar article
representations. The CSX-dataset3 contains bibliographic
data used by the CiteSeerX search engine for systematic
digital literature. CSX also stores the full abstracts of all
its publications in text-format. These conceptual are the
largest   attributes   in   our    experiments.   Our   work
focuses  on   increasing  efficiency  while  keeping  the
same   effectiveness.   Hence,   we  assume  a   given,
correct similarity measure; it is treated as an exchangeable
black box. For our experiments, however, we use the
Levenshtein similarity. This similarity measure achieved
an  actual  precision  of  95  percent  on  the  CD-dataset,
for which we have a true gold standard.

We first generally evaluate the performance of our
advances and compare them to the conventional sorted
neighborhood method and the sorted list of record pairs
presented. Then, we test our algorithms using a much
larger dataset and a concrete use case. The graphs used

Table 1: Compare Duplicate vs Time
Time
-------------------------------------------------------------------------

Algorithm 0.1 0.5 1 1.5 2
SNM 50 98 124 134 143
PSNM 65 121 143 186 210
Naïve 78 156 197 243 297

Fig. 3: Performance comparison of the traditional SNM
and the PSNM and Naive

CONCLUSION AND FUTURE WORK

Duplicate detection is an essential problem in data
cleaning and an adaptive approach that learns to identify
duplicate records for a detailed domain has clear
advantages over static methods. Experimental results
demonstrate that trainable similarity measures are capable
of learning the definite notion of similarity that is
appropriate for a specific domain. We presented naive and
distance measures that improve the duplicate detection.
It would be interesting to compare static-active sample
selection with dynamic learning techniques, since the
results would help determine how much active learning
helps select revealing instruction pairs beyond that of just
balancing the extremely uneven class distribution in the
training data. The proposed method for weakly-labeled
negative collection results in training sets that never
enclose “near-miss” negative examples, since the inverse
blocking method guarantees that records preferred for
negative pairs are different. While there were no
indications that this methodology hurts accuracy
compared to random selection of true negative examples,
it would be interesting to evaluate weakly-labeled
negative  selection  to  active  learning  to  conclude  how
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much accuracy enhancement can be attained from 6. Newcombe,    H.B.   and   J.M.   Kennedy,  1962.
employing near-miss negatives during training. “Record linkage: Making maximum use of the
Comparing active learning with a combination of  the  two discriminating power of identifying information,”
techniques that we proposed, static-active duplicate Commun. ACM, 5(11): 563-566.
selection and weakly-labeled non-duplicate collection 7. Hern andez, M.A. and S.J. Stolfo, 1998. “Real-world
could also yield interesting tentative results. Finally, data is dirty: Data cleansing and the merge/purge
exploring approaches to using weakly-labeled evidence problem,” Data Mining Knowl. Discovery, 2(1): 9-37.
pairs as both duplicate and non-duplicate training 8. Draisbach,    U.,    F.      Naumann, S.     Szott    and
patterns could potentially direct to new simply O. Wonneberg, 2012. “Adaptive windows for
unsupervised duplicate detection methods. duplicate detection,” in Proc. IEEE 28  Int. Conf. Data
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