
Middle-East Journal of Scientific Research 24 (Techniques and Algorithms in Emerging Technologies): 291-296, 2016
ISSN 1990-9233;
© IDOSI Publications, 2016
DOI: 10.5829/idosi.mejsr.2016.24.TAET23540

Corresponding Author: S. Ramya, PG Scholar, Department of CSE,
Vivekanandha College of Engineering for Women, Tamilnadu, India.

291

An Efficient Duplicate Detection Based on
Navie Block Detection Algorithm

S. Ramya and C. Palani Nehru1 2

PG Scholar, Department of CSE, Vivekanandha College of Engineering for Women, 1

Tamilnadu, India
Assistant Professor, Department of CSE, 2

Vivekanandha College of Engineering for Women, Tamilnadu, India

Abstract: The problem of identifying in the order of duplicate records in databases is an essential step for data
cleaning and data integration methods. Most existing advances have relied on generic or manually tuned
distance metrics for estimating the similarity of potential duplicates. A variety of experimental methodologies
have been used to evaluate the accuracy of duplicate-detection systems. In this paper propose naive detection
algorithm by making intelligent guesses which records have a high possibility of representing the same
real-world entity, the search space is reduced. An implement naive approach to be used as a baseline simply
generates all possible pairs of objects that are stored within the data source. Experiments show that the naive
algorithm is better than progressive duplicate detection and that the comprehensive algorithm to some extent
improves upon it in terms of efficiency (detected duplicates vs. overall number of comparisons).

Key words: Duplicate detection Data cleaning Naive detection Progressiveness

INTRODUCTION entity. For example, due to various errors in data

Duplicate detection is the problem of influential that product names in sales records may not match exactly
two different database entries in reality represent the with records in master product index tables. In these
same real-world entity and performing this detection situations, it would be desirable to match similar records
for all objects corresponded to in the database. transversely relations. This difficulty of matching similar
“Duplicate detection" is also known as record relation, records has been studied in the context of record linkage
Entity classification, record matching and many other (e.g. [1-3]) and of identifying approximate duplicate
terms. It is a much researched problem with high entities in databases.
importance in the areas of master data management, Several other practical issues arise when training
data warehousing and ETL, customer relationship adaptive duplicate-detection systems using machine
management and data integration. Duplicate detection learning. These include how to competently collect
must solve two intrinsic difficulties: Speedy discovery of effective training data for the system and how to correctly
all duplicates in large data sets (competence) and correct measure overview accuracy. We can imagine two
identification of duplicates and non-duplicates different scenarios in which machine learning can
(effectiveness). be used to recover duplicate detection. In the first

Data cleaning is a significant element for developing scenario, the goal is to use machine learning to develop a
effective business intelligence applications. The inability general duplicate-detection system modified to a specific
to make sure data quality can unconstructively affect type of data, such as mailing addresses or bibliographic
downstream data analysis and ultimately key business citations, but not modified to a specific database. In this
decisions. A very vital data cleaning operation is that of approach, the concluding databases to be cleaned are not
classifying records which match the same real world obtainable during the training phrase. We call this the

and to differences in gathering of representing data,

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 291-296, 2016

292

“shrink-wrap” scenario, since the goal is to develop and parameterization problem. The focus differs: Xiao et al.
market a fixed “shrink-wrapped” software system that any find the top-k most similar duplicates regardless of how
user can be relevant to their own database without further long this takes by weakening the similarity threshold;
training. In the second scenario, the goal is to train a we find as many duplicates as possible in a given time.
system to clean a specific database and sample duplicate That these reproductions are also the most similar ones is
and non-duplicate pairs from this database be capable a side effect of our approaches.
of be recognized by the user during the training phase. Pay-As-You-Go Entity Resolution established three
We call this the “consulting” position, since it seems kinds of progressive duplicate detection techniques,
most suitable under a business model where a company called “hints”. A hint defines a perhaps good
is employing to clean specific databases and trains the implementation order for the evaluations in order to match
software predominantly for each database. capable record pairs earlier than less capable record pairs.

In this paper he naive duplicate detection algorithm However, all presented hints produce fixed orders for the
simply generates all possible pairs out of the data, comparisons and neglect the chance to dynamically
but discards reflexive pairs (i.e. a pair that looks like [a, a] regulate the comparison order at runtime based on
containing two references of the same object instance) intermediate results. Some of our techniques directly
and symmetric pairs (i.e. [b, a] will be discarded, if [a, b] tackle this issue. Furthermore, the presented duplicate
was already generated). detection advances calculate a hint only for a specific

Related Work: Much research on duplicate detection [4], that fits into main memory. By implementation one
[5], also known as entity resolution and by many other separation of a huge dataset after another, the overall
names centers on pair selection algorithms that try to duplicate detection process is no longer progressive.
maximize recollect on the one hand and effectiveness on This issue is only partly addressed, which proposes to
the other hand. The most important algorithms in this area calculate the hints using all partitions. The algorithms
are Blocking [6] and the sorted neighborhood method presented in our paper use a inclusive ranking for the
(SNM) [7]. Adaptive techniques. Preceding publications comparisons and consider the limited amount of available
on duplicate detection often focus on reducing the overall main memory. The third issue of the algorithms
runtime. Thereby, some of the proposed algorithms are established by Whang et al. relates to the planned
already proficient of approximation the quality of pre-partitioning strategy: By using minhash signatures
comparison candidates [7]. The algorithms use this [12] for the partitioning, the partitions do not be related.
information to choose the evaluation candidates more However, such an overlap improves the pair-selection [13]
carefully. For the same reason, other advances exploit and thus our algorithms consider not be separating blocks
adaptive windowing techniques, which enthusiastically as well. In distinction, we also progressively solve the
adjust the window size depending on the amount of multi-pass method and transitive closure computation,
recently found duplicates [8], [9]. These adaptive which are critical for a completely progressive workflow.
techniques dynamically recover the effectiveness of Finally, we provide a more general estimate on
duplicate detection, but in distinction to our progressive considerably larger datasets and employ a novel quality
techniques, they need to run for assured stages of time measure to quantify the presentation of our progressive
and cannot maximize the efficiency for any given time slot. algorithms.

Progressive techniques. In the last few years, Additive techniques. By merging the sorted
the profitable need for progressive algorithms also neighborhood method with blocking techniques,
commenced some definite studies in this domain. pair-selection algorithms can be built that prefers the
For occurrence, pay-as-you-go algorithms for information comparison candidates much more precisely. The Sorted
combination on large scale datasets have been presented Blocks algorithm [13], for instance, applies blocking
[10]. Other works introduced progressive data cleansing techniques on a set of input records and then slides a
algorithms for the analysis of sensor data streams [11]. small window between the different blocks to select
However, these advances cannot be applied to duplicate further comparison candidates.
detection.

Xiao et al. proposed a top-k similarity join that uses Proposed Work: In this section the proposed algorithm
a particular index structure to estimation capable naive block partitioning are responsible for selecting pairs
evaluation candidates [11]. This approach progressively of records from the extractors that should be classified as
determines duplicates and also relieves the duplicate or non-duplicate. The naive supports that follow

separation, which is a (perhaps large) subset of records

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 291-296, 2016

293

a pair-wise comparison pattern and it already provides a Preprocessor: The preprocessor is used to gather
increasing selection of such algorithms. An implemented statistics while extracting the data, e.g., counting the
naive approach to be used as a baseline generates all number of records or (dissimilar) values. After the
possible pairs of Entities that are stored within the data extraction phase, each preprocessor instance is available
source(s). Each pair is returned only once. So if (a, b) is within the algorithm and might be used within
already returned, (b, a) is not. This algorithm use comparators that need preprocessing information.
preprocessing, such as sorting for the Sorted
Neighborhood Process or partitioning for the Blocking Partitioning Algorithms: In this proposed system two
Method. Therefore, each algorithm can execute a admired families of methods for duplicate detection.
preprocessing step before returning record pairs. In case Blocking methods partition data into numerous blocks or
of sorting, naive allows the definition of a sorting key. partitions and compare only tuples within a partition.
A sorting key collects a list of different sub-keys which Windowing methods on the other hand sort the data,
specify attributes or part of attribute values. The sorting slide a window transversely the arranged data and
can be executed by an in-memory (for small datasets) or compare only within the window.
by label based sorter.

Data Extractors: The data extractor element is used to separating the set of tuples into disjoint partitions
extract data from any data source that is sustained by the (blocks) and then evaluating all pairs of tuples only within
toolkit and to alter the data into the internal JSON format. each block. Thus, the overall number of comparisons is
Currently, For each data extractor, a record identifier, greatly reduced; see Tab. 1 for an overview of the
consisting of one or many attributes, can be defined and computational difficulty of the different methods
furthermore a global ID is assigned to each data extractor, compared to the extensive approach of comparing all the
which is also saved within the removed records. pairs of tuples. An important decision for the blocking
This allows a evaluation of records from different sources method is the choice of a good partitioning predicate,
without the essential of an extractor-wide unique which establishes the number and size of the
identifier. partitions. They should be chosen in a manner that

Fig. 1: Naive Detection Architecture is allocated to each tuple. The key does not have be

Blocking: Blocking methods practice the simple idea of

possible duplicates appear in the same partition. E.g.,
for CRM functions a typical partitioning is by zip-code
or by the first few digits of zip-codes. If two
duplicate tuples have maintained the same zip code,
they appear in the same partition and thus can be
predictable as duplicates. Other partitioning might be
by last name or some fixed-sized pre x of them,
by street name, by employer, etc. In broad, partitions of
generally same size are preferable. For simplicity we
imagine in the following that separations are of equal size.
Finally, a transitive closure is created over all detected
duplicates, because duplicity is intrinsically a transitive
relation and thus more correct duplicate pairs can be
reported.

To detect duplicates that change in the partitioning
attribute, a multi-pass method is in use for Blocking
methods to perform several runs, each time with a
different partitioning predicate.

Windowing: Windowing methods are vaguely more
detailed than blocking methods. The naive, which is
divided into three phases. In the first phase, a sorting key

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 291-296, 2016

294

distinctive and can be produced by concatenating values that are close to each other with deference to that order
(or substrings of values) from dissimilar attributes. have a higher chance of being duplicates than other pairs
In the second phase, all tuples are sorted according of tuples.
to that key. As in the blocking method, the hypothesis To further compare naïve analyze the relationship
is that duplicates have similar keys and are thus between number of blocks b and window size w.
close to each other after sorting. The first two To achieve the same number of evaluations for both
phases are similar to the selection of a partitioning methods we calculate:
predicate in the blocking method. The final phase
of naive slides a window of preset size across the
sorted list of tuples. All pairs of tuples that appear
in the same window are evaluated. The size of (1)
the window (typically between 10 and 20)
represents the trade-off between efficiency and with n = 20 and w = 3 confirm that the partitioning
effectiveness; larger windows yield longer run-times but into 4 partitions approximately accomplishes the same
discover more duplicates. number of comparisons as the windowing method with

Duplicate Comparator: The proposed algorithm
reducing the number of comparisons by making Duplicate Detection: Windowing methods and blocking
intelligent guesses as to which pairs of tuples have a are two extreme examples concerning the overlap of the
chance of being duplicates. Naive rely on some intrinsic partitions. Let U be the intersection between two
orderings of the data and the assumption that tuples partitions P1 and P2, which we call.

window size 3:

Fig. 2: Comparing blocking and windowing

U = P1 P2 (2) recognized. On the other hand, the overlap should not bep1,p2

u = |U | (3) comparisons. The model be related depends on the datap1,p2

set and has to be determined manually for each use case.
In the best case when using separating methods, The basic scheme of the new Sorted Blocks method

tuples that are really true duplicates are assigned to the is to first sort all tuples so that duplicates are close in the
same partition. The model be related between two sort sequence, then separation the records into disjoint
partitions should be big enough, so that real duplicates sorted sub-sets and finally to overlap the partitions.
that for any reason are not in the same partition are The size of the be related can be defined using u, e.g.,

too high, thus resulting in a large increase of record

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 291-296, 2016

295

u = 3 means that three tuples of each neighboring for performance dimensions plot the total number of
partition are element of the overlap, which hence has a description duplicates over time. Each duplicate is a
total size of 2u. Within the overlap, a fixed size window positively matched record pair. For enhanced readability,
with size u + 1 is slid across the sorted data and all we manually marked some facts points from the many
reports within the window are compared. In this way, hundred measured data points that make up a graph.
the additional complexity of the be related is linear.
Note that this windowing technique is used only in the
overlapping part; within a partition all pairs of tuples are
compared.

RESULTS AND DISCUSSION

The most proficient overlap-setting of u = 2 between
the partitions is selected experimentally. Compares the
results of different overlaps with u = 2 as a baseline.
For each F-Measure-value the graphs show the least
number of additional comparisons necessary to achieve
that value. A first observation is that the graphs are
always above zero, so naive Blocks with overlap u > 2
needs more record comparisons than naive Blocks with u
= 2 to achieve the same F-Measure and is hence less
proficient. Another effect observes is that with an
increasing F-Measure, the number of additional
comparisons generally decreases. Because the F-Measure
depends on the recall and therefore on the number of
record evaluations, it can be increased with an increasing
partition size, but this reduces the effect of the overlap
between the partitions.

The CD-dataset1 contains various records about
music and audio CDs. The DBLP-dataset 2 is a
bibliographic index on computer science journals and
proceedings. In contrast to the other two datasets,
DBLP includes many, large groups of similar article
representations. The CSX-dataset3 contains bibliographic
data used by the CiteSeerX search engine for systematic
digital literature. CSX also stores the full abstracts of all
its publications in text-format. These conceptual are the
largest attributes in our experiments. Our work
focuses on increasing efficiency while keeping the
same effectiveness. Hence, we assume a given,
correct similarity measure; it is treated as an exchangeable
black box. For our experiments, however, we use the
Levenshtein similarity. This similarity measure achieved
an actual precision of 95 percent on the CD-dataset,
for which we have a true gold standard.

We first generally evaluate the performance of our
advances and compare them to the conventional sorted
neighborhood method and the sorted list of record pairs
presented. Then, we test our algorithms using a much
larger dataset and a concrete use case. The graphs used

Table 1: Compare Duplicate vs Time
Time

Algorithm 0.1 0.5 1 1.5 2
SNM 50 98 124 134 143
PSNM 65 121 143 186 210
Naïve 78 156 197 243 297

Fig. 3: Performance comparison of the traditional SNM
and the PSNM and Naive

CONCLUSION AND FUTURE WORK

Duplicate detection is an essential problem in data
cleaning and an adaptive approach that learns to identify
duplicate records for a detailed domain has clear
advantages over static methods. Experimental results
demonstrate that trainable similarity measures are capable
of learning the definite notion of similarity that is
appropriate for a specific domain. We presented naive and
distance measures that improve the duplicate detection.
It would be interesting to compare static-active sample
selection with dynamic learning techniques, since the
results would help determine how much active learning
helps select revealing instruction pairs beyond that of just
balancing the extremely uneven class distribution in the
training data. The proposed method for weakly-labeled
negative collection results in training sets that never
enclose “near-miss” negative examples, since the inverse
blocking method guarantees that records preferred for
negative pairs are different. While there were no
indications that this methodology hurts accuracy
compared to random selection of true negative examples,
it would be interesting to evaluate weakly-labeled
negative selection to active learning to conclude how

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 291-296, 2016

296

much accuracy enhancement can be attained from 6. Newcombe, H.B. and J.M. Kennedy, 1962.
employing near-miss negatives during training. “Record linkage: Making maximum use of the
Comparing active learning with a combination of the two discriminating power of identifying information,”
techniques that we proposed, static-active duplicate Commun. ACM, 5(11): 563-566.
selection and weakly-labeled non-duplicate collection 7. Hern andez, M.A. and S.J. Stolfo, 1998. “Real-world
could also yield interesting tentative results. Finally, data is dirty: Data cleansing and the merge/purge
exploring approaches to using weakly-labeled evidence problem,” Data Mining Knowl. Discovery, 2(1): 9-37.
pairs as both duplicate and non-duplicate training 8. Draisbach, U., F. Naumann, S. Szott and
patterns could potentially direct to new simply O. Wonneberg, 2012. “Adaptive windows for
unsupervised duplicate detection methods. duplicate detection,” in Proc. IEEE 28 Int. Conf. Data

REFERENCES 9. Yan, S., D. Lee, M.Y. Kan and L.C. Giles, 2007.

1. Agichtein, E. and V. Ganti, 2004. efficient record linkage,” in Proc. 7 ACM/ IEEE Joint
Mining reference tables for automatic text Int. Conf. Digit. Libraries, pp: 185-194.
segmentation. In Proceedings of ACM SIGKDD. 10. Jeffery, S.R., M.J. Franklin and A.Y. Halevy, 2008.

2. Arasu, A., V. Ganti and R. Kaushik, 2006. “Pay-as-you-go user feedback for dataspace
Efficient exact set-similarity joins. In Proceedings of systems,” in Proc. Int. Conf. Manage. Data, pp: 847-
VLDB. 860.

3. Argamon-Engelson, S. and I. Dagan, 1999. 11. Xiao, C., W. Wang, X. Lin and H. Shang, 2009.
Committee-based sample selection for probabilistic “Top-k set similarity joins,” in Proc. IEEE Int. Conf.
classifiers. Journal of Artificial Intelligence research. Data Eng., pp: 916-927.

4. Elmagarmid, A.K., P.G. Ipeirotis and V.S. Verykios, 12. Indyk, P., 1999. “A small approximately min-wise
2007. “Duplicate record detection: A survey,” independent family of hash functions,” in Proc.
IEEE Trans. Knowl. Data Eng., 19(1): 1-16, Jan. 2007. 10 Annu. ACM-SIAM Symp. Discrete Algorithms,

5. Naumann, F. and M. Herschel, 2010. An Introduction pp: 454-456.
to Duplicate Detection. San Rafael, CA, 13. Draisbach, U. and F. Naumann, 2011.
USA: Morgan and Claypool. “A generalization of blocking and windowing

th

Eng., pp: 1073-1083.

“Adaptive sorted neighborhood methods for
th

th

algorithms for duplicate detection,” in Proc. Int. Conf.
Data Knowl. Eng., pp: 18-24.

