
Middle-East Journal of Scientific Research 24 (Techniques and Algorithms in Emerging Technologies): 236-241, 2016
ISSN 1990-9233;
© IDOSI Publications, 2016
DOI: 10.5829/idosi.mejsr.2016.24.TAET23532

Corresponding Author: B.M. Beena, Senior Assistant Professor, Department of CSE, NHCE, Bangalore,
Visvesvaraya Technological University, Belgaum.

236

Power-Aware Algorithms over Dual Processors for Real Time Periodic Applications

B.M. Beena and Dr. C.S.R. Prashanth1 2

Senior Assistant Professor, Department of CSE, NHCE, Bangalore,1

Visvesvaraya Technological University, Belgaum, 
 HOD and Dean of Academics, Department of CSE, NHCE, Bangalore,2

Visvesvaraya Technological University, Belgaum, 

Abstract: Consistently, dynamic voltage scaling (DVS) techniques have concentrated on diminishing the
processor energy utilization instead of the whole framework power utilization. A two-fold processor framework
comprises of two processors where the application tasks are executed utilizing Dynamic Voltage Scaling (DVS)
to conserve energy. In our system, we utilize Earliest-Deadline-First (EDF) planning approaches on both the
CPUs. We add to a couple of element calculations in light of these standards and assess their work execution
provisionally. Our simulation results show compelling energy savings in contrast to existing Reliability-Aware
energy management (RAPM) procedures for most execution situations. In Energy and Performance cognizant
sharing scheduling algorithms over the two-fold processor for online applications that dynamically cut down
the processor speed while still meeting timing constraints. The application tasks are run on both processors
utilizing DVS to conserve energy.

Key words: Power  Management   Real-Time  Systems   Dynamic  Voltage  Scaling   Standby-Sparing
 EDF Scheduling.

INTRODUCTION opportunities to tolerate permanent processor faults. A

In  recent  years, processor performance has Where the application tasks are executed on both
increased at the expense of drastically increased power processor using Dynamic Voltage Scaling to save energy.
consumption. On the other hand, such increased power Once the completion of a task is a success, the
consumption decreases the lifetime of battery operated corresponding task is cancelled and excessive energy
systems. Increased power consumption generates more consumption is avoided. We employ Earliest-Deadline-
heat, which causes heat dissipation to be a problem First (EDF) [1,6] scheduling [7] policies on the both CPUs.
because expensive packaging and cooling technology are Due to its dual-CPU structure, it can withstand the
required which decreases the reliability [1]. Energy permanent fault of a single CPU. Also, since the backups
management  is  a  frequent design concern  for  real  time execute with voltage scaling, the system’s original
embedded systems. reliability [5] (in terms of resilience with respect to

In multiprocessor real time systems, Power transient faults) is preserved.
management [2,3] adjusts the change in processor speed Dynamic Voltage Scaling (DVS) [5,4] technique
that has task execution time, which affects  the reduces energy consumption, involving simultaneous
scheduling of tasks on processors. This change may scaling of the CPU supply voltage and frequency. The
cause a violation of timing requirements. Here we present real-time execution semantics mandate that the timing
an energy-aware dual processor technique for Periodic constraints (the feasibility requirement) be met at run-time
Real-Time [1,4] applications that dynamically adjusts the even when task response times may increase as a
speed while still meeting timing requirements. Dual consequence of the energy management techniques. In
processor technique combines hardware redundancy with addition to feasibility and energy management, reliability
Dynamic Voltage Scaling (DVS) [1,4] to save energy while [6] and fault tolerance are other important objectives for
preserving the system’s original reliability [5] and offer real-time embedded systems.

Dual processor [6] system consists of a two processor.



Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 236-241, 2016

237

Proposed Work: Bringing the system back to a previous increased tremendously albeit at the cost of higher power
safe state and repeating the execution is a common consumption. Energy efficient operation has therefore
approach to deal with the transient faults. Recent study become a very pressing issue, particularly in mobile
suggests that the transient fault rates increase applications which are battery operated.
significantly in systems where the supply voltage is cut
down to conserve energy. Existing Systems: The present system works on a single

The main purpose of Dual Processor Technique is to processor. RAPM aims at reducing power consumption of
minimize energy consumption, load sharing and to tasks by using the available Slack [9] given by DVFS and
preserve reliability with respect to various faults in Real- maintain system’s original reliability [5] by scheduling [3]
Time embedded systems. Categorically, the technique a recovery job whose execution is scaled down. If a
employs two processors. The application tasks are transient fault is detected during the execution of job J,
executed on the both processor using DVS. The backup then the recovery job will be dispatched at maximum
tasks also use DVS with little upper frequency. frequency, f(max). The advantage of RAPM over DVFS is

Preamble: The Information Technology in general greatly [5].
contributes to global warming. Designers are considering The RAPM techniques run both the Primary and its
environmental resource constraints along with more corresponding backup task on the same processor. This
traditional IT business goals towards minimizing energy technique eliminates the transient faults. It has two major
consumption, which has become an important objective drawbacks,
for organizations [8]. Big data centres like Face book,
Amazon and Google have got the most attention. In the Cannot offer performance greater than 50% 
past, the attention towards energy conservation was very Does not provide redundancy to tolerate permanent
less, eventually suffering the consequences. failures

In order to improve the system’s performance it is
obvious to reduce power consumption. Many adequate In this system, pre-emptive scheduling [6] is used. A
technologies with new competence are being designed as standby processor is added to withstand the permanent
magical cures. Still, saving power is a much more complex failure of single CPU. The scheduling [6] algorithm used
architectural problem. The energy consumption is not are EDF (Earliest Deadline First) and EDL [10] (Earliest
only determined by the efficiency of the physical Deadline Late). On the Primary processor, the task is run
resources, but the resource management system deployed using DVS [1,4] techniques whenever there is dynamic
in the infrastructure and efficiency of applications running Slack [6], thus reducing power consumption. The
in the system. scheduling algorithm on the Primary processor [5] used is

Power management techniques are employed to (EDF) [11]. On the secondary processor, the backup task
conserve power across servers. In static Power [6] is run at maximum frequency. This helps in retaining
management [7,3], we measure minimal processor speed at the system’s original reliability [5]. EDL is used to
compile time to ensure that the tasks execute just-in-time schedule the backup tasks. Using this algorithm we delay
by applying static scheduling [6] algorithms at compile the backup task as much as possible. Many backup tasks
time to optimize power consumption making use of static are cancelled even before they start executing. This
slack to delay the execution of tasks. In dynamic Power happens when the corresponding Primary task completes
management, the processor supply voltage and speed executing successfully on the Primary processor before
adjusted together at run time. The tasks are then run with the backup [4] task starts on the secondary processor.
minimal voltage supply and speed to conserve energy If the Primary task runs to completion successfully,
using run time behaviour to reduce power when the the backup task is cancelled. Otherwise, the backup task
system is idle or on light work load. Dynamic Power runs to completion. The joint use of (EDF) [1] and EDL on
management [4] can be applied using Dynamic Voltage Primary and secondary processors respectively, minimizes
Scaling (DVS) [3,6] which can be implemented at the CPU- the overlap between the two copies at run time. It also
level or system-level to save energy. In DVS, the voltage helps us reduce energy costs due to backup [4] task
supplied to a component is either increased or decreased executions. EDLschedule is computed offline at the pre-
depending upon the circumstances. Current processors processing phase and the idle intervals are recorded.
[1] that use DVS typically have an operating voltage Intervals reserved in EDL schedule for the backup task are
range from full to half of the maximum Vdd. Due to not considered during computation of available Slack for
technology scaling; microprocessor performance has slow down.

that  it,  RAPM maintains the system’s original reliability



Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 236-241, 2016

238

Whenever a job arrives, its EDL is calculated and idle time units and ck/f times units respectively when executed
intervals  are  recorded. If the Primary processor is idle at frequency fi and fk. Note that the backup [6] Bij and Bkl
and a job arrives, it starts executing by obtaining the takes at more than ci/f time units and ck/f times units
slowdown rate for execution. If the Primary processor is respectively since it is executed with voltage scaling of
busy, the priority of the arrived job is considered and pre- more than frequency used in DVS.
empted accordingly. A job with an earlier deadline is
given a higher priority. Once the task on the Primary OUR WORK
processor runs to completion, a test is performed to check
if the task isexecuted successfully. If yes, the backup task
is cancelled. Else, the backup task runs to completion.

Proposed Sspt: Whenever a real time task arrives on the
system, it is put into the real time task queue. The queue
that holds the non real time tasks is called stored in the
non real time queue. On the arrival of a task, the operating
system checks if the task is a real time task or a non real
time task and it places the task in the respective queue. In
the proposed system, this step is skipped and the users
will be prompted to enter the number of real time tasks.
The real time tasks are taken as an input from the users
and put into its respective queue. The system design
consists of two processors. The two processors i.e.
processors P1 and P2 operate on tasks from the real time
queue. On the processors P1 and P2, the real time tasks
are scheduled using the (EDF) scheduling [3] algorithm.
On the processors P1 and P2, the real time tasks which
execute at a scaled down frequency.

We consider a Dual processor system that consists
of Two CPU. The each separate job Jij and Jkl runs on
both the CPUs, which is assumed to have the DVS [6]
capability, while the backup of jobs, denoted by Bij and
Bkl, runs on the same CPU with voltage scaling (i.e. at the
little maximum frequency than used in DVS). The
frequency fi and fk of the CPUs is adjustable up to a
maximum frequency of fimax and fkmax. We normalize all
frequency values with respect to fimax and fkmax. We
consider a set of Periodic Real-Time [7,10] tasks ¥ = {T1...
Tm}. The real-time task sets are specified using a pair of
numbers for each task, indicating its period and worst-
case computation time. Each periodic task Ti has worst-
case execution time ci under the maximum CPU frequency
and the period pi.

The workload executes on a set of two cores. Each
core can operate at one of the K different frequency
settings ranging from a minimum frequency, fmin to fmax.
We denote by F the set of available frequency settings.
Without loss of generality, we normalize the frequency
levels with respect to fmax (i.e., fmax = 1.0). At frequency
f, a core may require up to ci/f time units to complete a job
of task Ti.

The relative deadline of task Ti is assumed to be
equal to its period. A job Jij and Jkl may take up to ci/f

START
/*Tasks arrives to the system */
Task Jk is released at time t:
Save_Task(list) /*list contains all the tasks released at
that time*/
/*Start execution of Tasks when it arrives*/
If the primary processor is idle then Dispatch (Jk,t)
wi?? ci /*Task executes at normalized frequency and
Remaining execution time of
task at fmax*/
Execute (Jj/Jk)/* if Ji was previously running else run Jk
*/
Save_Backup(list)/* Save Jk task for backup execution
if it fails in primary */
Else /* Task Jj is running */
If (priority (Jk) > priority (Jj) then
wi?? ci /*Task executes at normalized frequency and
Remaining execution time of
task at fmax*/
Execute (Jk) /*Jj priority should be rearranged using
EDF */
Save_Backup(list)/* Save Jk task for backup execution
if it fails in primary */
EDF (Jk,Jj)
Else
wi?? ci /*Task executes at normalized frequency and
Remaining execution time of
task at fmax*/
Execute (Jj)
/* Check for completion of Task execution*/
If (Jj completes)
Remove_Backup(Jj)
Else
wi?? ci /* Task executes at fmax frequency*/
Execute_Backup(Jj)
/* After successfully completion of Task */
If (Task list! =0)
Dispatch (Jl, t1)/*Execution of task starts at time t1 */
wi?? ci /*Task executes at normalized frequency and
Remaining execution time of
task at fmax*/
Execute (Jl) /*Task priority should be rearranged using
EDF */



Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 236-241, 2016

239

Save_Backup(list)/* Save Jl task for backup execution In case of an error, we can continue running the
if it fails in primary */
Else Wait ()/*Wait for next task arrival */
END

It is assumed that the processor power consumption
is dominated by the dynamic power dissipation Pd, which
is given by Pd=Cef* Vdd2 * f (where Cef is the effective
switching capacitance, Vdd is the supply voltage and f is
the processor clock frequency.).Processor speed,
represented by f, is almost linearly related to the supply
voltage: f=k*(Vdd2-Vt)2/Vdd, where k is constant and Vt
is the threshold voltage. The energy consumed by a
specific task ëi can be given as Ei=Pd * AT’, where AT is
the actual time taken by a task at CPU. When we decrease
processor speed, we also reduce the supply voltage.
Thus, the processor power consumption is reduced
cubically with f and the task energy consumption is
reduced quadratically with the high expense of linearly
decreasing speed and increase in execution time of the
task. So it is referred to speed adjustment as both
changing the processor supply voltage and frequency. 

The following are the formulae and values used for
calculating the energy:

Pd = Cef x Vdd 2 x f

In this work, we focus on two efficient heuristics for
Slack [6] distribution.

At run-time, whenever a job is released, it is
distributed between two processor queue and it is
dispatched immediately if the any processor is idle.
Otherwise, a job is dispatched only if it has a higher
priority than the currently executing job according to
(EDF) [1] policy.

In run-time both processors will be executing
assigned task. The processors speed will be changing
according to the worst case execution time of each
processor.

In case of pre-emption, the current job is pre-empted
and we update the minimum additional time required to
complete the job in the worst-case (under maximum
frequency).

Every time a job is dispatched or resumed after pre-
emption at time t, it can use the idle intervals between t
and  its  deadline  for  slowdown.  If  no   such  idle
interval  exists,  the  job  runs  at  set frequency on the
both processor.  At  completion  time  of  a  Primary  [4]
job, we initiate the corresponding acceptance test. If no
error is detected, it will execute the next waiting task
immediately.

backup as scheduled with the little high frequency than
usual.

The Dispatch procedure invokes a Set Speed
procedure that takes into account the remaining execution
time requirement of task Ti under maximum frequency
(namely, wi) and available Slack [9] (denoted by the
variable slack [9] in the algorithm) to determine the
frequency assignment for the job. 

The Set Speed procedure can use different heuristics
to determine the exact amount of slack [10] to allocate to
the job at dispatch time.

START
/*Tasks arrives to the system */
Task Jk and Jl are released at time t1 and t2:
Save_Task_1 (list) /*list contains all the tasks which are
going to execute on
Processor 1*/
Save_Task_2 (list) /*list contains all the tasks which are
going to execute on
Processor 2*/
/*Start execution of Tasks at Processor 1 when it
arrives*/
If the processor 1 is idle then Dispatch (Jk,t)
Wi*ci /*Task executes at normalized frequency and
Remaining execution time of task at fmax*/
Execute (Jj/Jk)/*if Ji was previously running else run
Jk*/
Else /* Task Jj is running */
If (priority (Jk) > priority (Jj) then
Wi* ci /*Task executes at normalized frequency and
Remaining execution time of task at fmax*/
Execute (Jk) /*Jj priority should be rearranged using
EDF */
EDF (Jk,Jj)
Else
Wi* ci /*Task executes at normalized frequency and
Remaining execution time of task at fmax*/
Execute (Jj)
/*Start execution of Tasks at Processor 2 when it
arrives*/
If the processor 2 is idle then Dispatch (Jk,t)
Wi* ci /*Task executes at normalized frequency and
Remaining execution time of task at fmax*/
Execute (Jj/Jk)/* if Ji was previously running else run Jk
*/
Else /* Task Jj is running */
If (priority (Jk) > priority (Jj) then
Wi* ci /*Task executes at normalized frequency and
Remaining execution time of task at fmax*/
Execute (Jk) /*Jj priority should be rearranged using



Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 236-241, 2016

240

EDF */
EDF (Jk,Jj)
Else
Wi* ci /*Task executes at normalized frequency and
Remaining execution time of task at fmax*/
Execute (Jj)
/* Checking for completion of Task execution in both
Processor1 and Processor2*/
If (Jj completes)
Execute_NextTask ()
Else
Wi*ci /* Task executes at fmax frequency*/
Re-execute (Jj)
/* After successfully completion of Task execute next
scheduled task in both Processor 1 and Processor
parallel*/
If (Task_List ! =0)
Dispatch (Jm, t2)/*Execution of task starts at time t1 */
Wi* ci /*Task executes at normalized frequency and
Remaining execution time of task at fmax*/
Execute (Jm) /*Task priority should be rearranged using
EDF */
Else Wait ()/*Wait for next task arrival */
END

Experimental Evaluation: We have developed a simulator
to evaluate the potential energy savings from voltage
scaling in a real-time scheduled system. The simulator
takes as input a task set, specified with the period and
computation requirements of each task, as well as several
system parameters and provides the energy consumption
of the system for each of the algorithms we have
developed. The simulation assumes that a constant
amount of energy is required for each cycle of operation
at a given voltage.

The proposed system was implemented and tested
extensively on all the possible scenarios.

Graph 1: Comparison of energy consumption in Existing
Method and Proposed Method

The below snapshots shows the energy consumed
by the Existing and Proposed methods for 10, 4, 9, 11
Tasks. And it also gives the percentage difference
between energy consumption Existing and Proposed
methods. For the existing method the Primary [4]
processor runs all the tasks and if tasks fail then only
spare processor will act. Hence the load on Primary [4]
processor will be high which leads to degradation of the
performance of the system. But in the proposed method
the tasks will be shared with two processors which lead to
good performance of the system.

Fig. 7.5: (a) Energy consumed by Existing and Proposed
method for 10 tasks. The comparison of
proposed and existing algorithm is 38.84%

Units: x-axis corresponds to number of tasks and y-axis
corresponds to energy consumption in Joule

Graph 2: Energy consumption in Existing Method and
Proposed Method for different Task list sets. The energy
consumption for each task depends on the arrival time of
the task, execution time utilized by the task. If the tasks
fail to execute at first attempt the deadline of the task also
be accountable for the calculating or energy consumption
value.

Power Consumption: 

Fig. 7.6: Energy consumed by Existing and Proposed
method for different Task list

CONCLUSION AND FUTURE ENHANCEMENT

Here explored a hardware redundancy technique for
Periodic Real-Time [1,4] tasks based on Dual processor
technique. The main contribution of this effort will be
energy-efficient scheduling [3] algorithm for pre-emptive



Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 236-241, 2016

241

Periodic Real-Time [1,4] tasks running on a Dual 4. Yifeng Guo and Dakai Zhu, 2013. Member, IEEE,
processor system. The framework uses the (EDF) [1] Hakan Aydin, Member, IEEE and Laurence T. Yang
algorithm for scheduling [3] tasks on both processors. Senior Member, IEEE “Energy-Efficient Scheduling of
This allows executing the different tasks in different Primary/Backup Tasks in Multiprocessor Real-Time
processors based on the deadline as the priority. An Systems (Extended Version)”.
advantage of this framework is that often the re-execution 5. Mohammad A. Haque and Hakan Aydin Dakai Zhu,
of the tasks can be cancelled upon the early and 2013. Energy-Aware Task Replication to Manage
successful completion of the tasks. Simulation results Reliability for Periodic Real-Time Applications on
underline potential for energy savings compared to Multicore Platforms.
RAPM for most scenarios, while provisioning for 6. Mohammad A. Haque, HakanAydin and Dakai Zhu,
permanent faults and still preserving the original reliability 2011. Energy-Aware Standby-Sparing Technique for
[5] in terms of tolerance to transient faults. Periodic Real-Time Applications, Proc of IEEE, 2011

We have presented a first step towards runtime 7. Jejurikar, R. and R. Gupta, 2004. Dynamic voltage
dynamic voltage scaling in Standby sparing Technique scaling for systemwide energy minimization in real-
and we plan to improve further for real-time tasks. The time embedded systems,” in Proceedings of the Low
proposed algorithm is particularly efficient for low-to- Power Electronics and Design, ISLPED.
modest workload scenarios and we like to improve for 8. Energy based Efficient Resource Scheduling:  2014.
heaviest work-load scenarios. Finally, we plan to extend A Step Towards Green Computing, Sukhpal Singh
our algorithm for real time, non-real time and multi and Inderveer Chana, International Journal of
processor systems. Energy,     Information       and    Communications,

REFERENCES 9. Dakai Zhu and Hakan Aydin, 2007. Reliability-Aware

1. Energy-Aware cheduling (EAS) Project,By Amit Proc of IEEE,
Kucheria Posted January 27, 2015. 10. Dakai Zhu, Rami Melhem and Bruce R. Childers, 2003.

2. Energy-efficient task scheduling algorithms on Scheduling with Dynamic Voltage/Speed Adjustment
heterogeneous computers with continuous and Using Slack [10] Reclamation in Multiprocessor Real-
discrete speeds,Luna Mingyi Zhanga, Keqin Li, Dan Time Systems, Proc of IEEE.
Chia-Tien, Yanqing Zhang L.M. Zhang et al. / 11. Ramesh Mishra, NamrataRastogi, Dakai Zhu, Daniel
Sustainable  Computing:  Informatics  and  Systems, Moss´e and Rami Melhem, 2003. Energy Aware
3: 109-118. Scheduling for Distributed Real-Time Systems,

3. Anton Beloglazov, Rajkumar Buyya, Young Choon Proceedings of the International Parallel and
Lee and Albert Zomaya, 2010. A Taxonomy and Distributed Processingg Symposium.
Survey of Energy-Efficient Data Centers and Cloud
Computing Systems.

l.5(2): 35-52. 

Energy Management for Periodic Real- Time Tasks,


