
Middle-East Journal of Scientific Research 24 (Techniques and Algorithms in Emerging Technologies): 162-168, 2016
ISSN 1990-9233;
© IDOSI Publications, 2016
DOI: 10.5829/idosi.mejsr.2016.24.TAET23422

Corresponding Author: N. Mohanappriya, Department of Computer Science and Engineering,
Vivekanandha Institute of Engineering and Technology for Women, Tiruchengode, Tamilnadu, India.

162

Prediction and Pan Code Reuse Attack by
Code Randomization Mechanism and Data Corruption

N. Mohanappriya and R. Rajagopal1 2

Department of Computer Science and Engineering, 1

Vivekanandha Institute of Engineering and Technology for Women, Tiruchengode, Tamilnadu, India
 Department of Computer Science and Engineering, 2

Vivekanandha Institute of Engineering and Technology for Women, Tiruchengode, Tamilnadu, India

Abstract: Policy-recycle attacks, such as return-oriented programming (ROP), are a group of buffer spread out
attacks that repurpose existing executable code towards malevolent purpose. These attack bypass defenses
against code vaccination attacks by chaining together sequence of instructions, commonly known as gadgets,
to execute the beloved attack logic. A fine grained randomization based approach that break these assumptions
by modifying the layout of the executable code and hinder code-reuse attack.Here we use data corruption
advance for sending the data from sender to receiver without any attacks. Our clarification, Marlin, randomizes
the internal structure of the executable code by randomly shuffling the function blocks in the aim binary.
This denies the attacker with a priori knowledge of instruction addresses for constructing the desired develop
payload. Our approach can be applied to any ELF binary and every execution of this binary uses a different
randomization. Our work shows that such an approach incur low overhead and appreciably increases the level
of safety against code-reclaim based attacks.

Key words: Return-oriented programming Code randomization Security Malware

INTRODUCTION intuitive solution is to randomize process reminiscence

Return Oriented Programming(ROP) attacks are an (ASLR), the start address of the code segment is
highly developed form of cushion overflow attacks that randomized. First, the main shortcoming of earlier
reuse existing executable code towards malevolent randomization-based techniques was insufficient entropy,
purposes. While earlier exploits involved the injection of thus making brute-force attacks feasible. Second,
malicious code, the recent inclination has been to reuse executable code can naturally be broken into many
executable code that already exists, primarily in the function blocks that can potentially be shuffled.
application binary and shared libraries such as libc. Consequently, the amount of possible randomization
These code reuse attacks can circumvent time-privileged generated can be significantly increased by permuting
defenses against code injection attacks such asW _ X these code blocks within the executable.
guard that prevents execution of arbitrary code that is If the data is sent from sender to receiver, the data we
injected into the memory. In a basic code recycle attack, send will be converted into binary code. The binary code
for instance return-into-libc attack [1], a buffer overflow will get randomized. For instance, if an application has
corrupts the return address to jump to a libc function, 500 function blocks, there are 500! _ 23;767 possible
such as system. This type of attack then evolved into a permutations of these function blocks which significantly
more basic ROP attack. These attacks continued to increases the brute force effort required from an attacker.
evolve, with newer techniques using gadgets that end in Our earlier implementation of Marlin was improved to
jmp or call instructions. As these attacks rely on knowing make the faster binary randomization. Set of experiments
the location of code in the executable and libraries, the are included to evaluate the Marlin technique.

images. In basic address space describe randomization

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 162-168, 2016

163

Marlin Defense Technique: Code-reuse attacks make
certain assumptions about the address layout of
application’s executable code. Marlin’s randomization
technique aims at breaking these assumption by shuffling
the code blocks in the binary’s. Text piece with every
execution of this binary. This significantly increases the
complexity of such attacks since the attacker would need
to guess the exact change being used in the current
process execution.

This shuffling is performed at the granularity of
function blocks. The various steps involved in Marlin
processing.

Marlin is included into a modified bash shell that
randomizes the target application just before the control
is passed over to this function for execution.

Randomization Algorithm: The randomization algorithm
described in Algorithm 1 involves two stages. In the first
stage, the function blocks are shuffled according to a
certain random permutation. During this shuffling, we
keep a record of the original address of the function
and also the new address where the function will
reside after the binary has been completely randomized.
This information is stored in a jump patching table.
Note that this jump patching table is discarded before
the application is given control, thus preventing
attacker from utilizing this information to de-randomize
the memory layout. After the data get randomized the it
will send to receiver. The Patch Relative Jump()
method takes the current address of the jump and the
address of the jump destination to determine the new
offset and patch the jump target. The second case is the
computed jumps where the contents of a register
specify the absolute address of the destination, for
example call to function pointers. The data gets
corrupted when the data is sending from sender to
receiver by data corruption approach. But the receiver will
receive the data correctly. Thus, to defeat Marlin, an
attacker would need to dynamically construct a new
exploit for every instance of every application which is
not possible since the randomized layout is not
accessible to the attacker. We now discuss the security
guarantee offered by Marlin. The data will get suffeled
and then it will send to the receiver. So by using this Randomization Stage: In this stage, the actual shuffle of
method we get more security while sending the data. By the function block is performed. The random permutation
using this there is no code reuse attacks while sending of symbols is generated first and scuff your feet the list of
the data by the user and by the receiver receiving the symbols to obtain a new order of symbols. The new
data. binary is re-written according to this new symbol order.

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 162-168, 2016

164

In our first round implementation [2], we did not shuffle
certain symbols such as _start that were referred to as not
allowed secret language. Our revised implementation no
longer has this limitation and all the symbols within.
Text section are now randomized, including _start symbol.
This _start symbol is the first instruction that executes
after the binary is loaded into the memory by the ELF
loader. This entry address is stored in ELF header of the
binary. Once the application is randomized, we patch the
ELF header with the new entry address which is the new
location of _start symbol.

Optimization Techniques: A straightforward performance of refuge-responsive data:
optimization for Marlin would be to perform the pre-
processing for jump patching only once for each Passwords and Private Keys: Leak passwords and private
application and store the result in a database maintained keys help evade authentication controls and break secure
by the system. The jump patching algorithm can reuse the channels time-honored by encryption techniques.
information about function blocks from this folder in
subsequent executions. The database would only need to Randomized Values: Several memory protection ramparts
be restructured when the application code changes. make use of randomized values generate by the program
The impact of the code randomization can be reduced by at runtime, such as stack canaries, CFI- enforcing tags and
taking the permutation generation off-line. To do so, each randomized addresses. Disclo- sure of such information
application will have a dedicated file containing the next allows attackers bypass randomization-based military
instance’s permutation. When a binary is executed, the protection.
custom shell sends a signal to a trusted daemon process
that runs with low main concern and returns the next Privilege Escalation: The attacks grant attackers the
transformation. The application’s meaning blocks are then access to privileged application funds. Specifically, we
shuffle accordingly. focus on the following kinds of program data.

Objectives & Threat Model: To develop technique to System Call Parameters: System calls are used for
robotically construct data-oriented attacks by edging data high-privilege operations, like setuid().
flows. The generated data-oriented attacks result in the Corrupting system call parameters can lead to
following penalty. privilege escalation.

Information Disclosure: The attack leak responsive data
to attackers. Specifically, we target the following sources

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 162-168, 2016

165

Configuration Settings: Program configuration data, jump patching table and it is discarded prior to the
especially for server programs (e.g., data loaded from process where the binary is given control. In the call
httpd.conf for Apache servers) specifies critical stage, the actual jump patching is executed and for every
information, such as the user’s per mission and the root jump the jump patching table will be examined.
directory of the web server. Corrupting such data directly
escalates privilege.

Threat Model: We assume the execution environment has
deployed defense mechanisms against control-flow
hijacking attacks, such as fine-grained CFI [3], non
executable data [4] and state-of-the-art implementation of
ASLR.

Therefore attackers cannot mount control flow
hijacking attacks. All non-deterministic system generated
values, e.g., stack-canaries or CFI tags, are assumed to be
and unknown to attackers.

Key Technique & Challenges: The key idea in data-flow publicized exploits utilizing a vulnerable buffer. This form
stitching is to efficiently search for the new data-flow of exploit allows the execution of arbitrary code under the
edge set Eto add inG0 such that it creates new data-flow attacker’s control, potentially allowing the attacker to
paths from v S to v T . For each edge (x;y)2E, x is data seize control of an entire program or even an entire system
dependent onvSandvTis data-dependent on y. We (through exploitation of vulnerable targets with elevated
denote the sub-graph of G containing all the vertices that privileges). To accomplish this, the malicious node is
are data-dependent on vS as the source flow. We also injected by an attacker into a vulnerable target and then
denote the sub-graph of G containing all the vertices that redirects the execution to the injected code [5]. In order to
v T is data-dependent on as the target flow. For each perform such form of attack, several prerequisites must be
vertex pair (x, y), where x is in thesource flow and y is in met. First, the targeted program must have a memory
the target flow, we check whether(x, y) is a feasible corruption vulnerability. Second, there must be a writable
edge of Eresulting from the inclusion of vertices from I. and executable region of memory. Third there must be a
The vertices x and y may either be contained in I directly, way to redirect the processor to execute the injected code.
or be connected via a sequence of edges by corruption of The first and third requirements are generally met through
their pointers which are in I. If we change the address to a buffer overflow that allows the attacker to push arbitrary
which x is written, or change the address from which y is code onto the stack and then overwrite the stack
read, the value of x will flow to y. If so, we call (x, y) the return address to redirect to control the attack payload.
stitch edge, x the stitch source and y the stitch target. The second requirement requires finding an area of
For example, we change the pointer (which is in I) of the memory that can both be written to and executed. The
file name from a 3 (address of the file name) to a 1 (address processor then begins to execute the attack payload,
of the private key). Then the flow of the private key and granting the attacker control of the current thread.
the flow of the file name are stitched, as we discuss in
Section 2.1. In finding data-flow stitching in the 2D-DFG.

Randomization Stage: Randomization will be done in jump
and call stages. The function blocks will be shuffled with
respect to certain random permutation in the jump stage.
A record of the original address of the functions and the
new address where the function will exist in after the
randomization of the binary will be maintained during the
time of shuffling. The information will be stored in the

Code Injection: Code injection attacks are one of the first

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 162-168, 2016

166

Code Reuse: Return Oriented Programming (ROP) mitigation tactic for code reuse attacks is to detect and
technique evolved from buffer overflow attacks. As terminate the attack as it occurs. Examples are DROP [11],
discussed in Section 2.1 previous attacks depended on DynIMA, CCFIR, CFL [12], ROPdefender and Here the
the presence of an executable stack. However the dynamic monitoring approach is used. Lastly there have
adoption of W X (also known as Data Execution been techniques proposed to reinforce the control flow on
Prevention – DEP) under which a memory page is either ARM. Two most notable utilities are MoCFI and control-
writable or executable, but not both at the same time, has flow restrictor. However these techniques are both
made such attacks ineffective. Code reuse attacks unsuitable for our application. While they are able to
bypass DEP protection. Without executing injected reinforce the control flow integrity of a target application,
code, an attacker identifies a small sequences of the overhead incurred by the verification is far too great.
instructions, named as gadgets, that end in a ret Within MoCFI, the CPU overhead of the verification
instruction. Then a sequence of addresses are grows in relation to the number of jumps as it must
carefully constructed on the software stack, an traverse the binary graph that is included within the
attacker that manipulates the ret instruction to jump binary after MoCFI has been applied. Pewny takes a
to any gadget to perform arbitrary computations. different approach by integrating itself within the
This techniques are worked in both word-aligned compiler eliminating the need for disassembly and
architectures like RISC and unaligned CISC architectures. construction of a control flow graph but it has long
Also these techniques perform privilege escalation in verification process. A comparison is made for each
Android create rootkits and even inject code into valid target of 1 to n, at the end of the function before
Harvard architectures. Additionally the same technique the final jump instruction. This incurs a large CPU
has been used to manipulate other instructions, such as overhead within recursive functions or loops making
jmp and their variants [6-8]. at worst up to n function calls. As discussed later

Defense Techniques: Several defense techniques for hashmap.
mitigating buffer overflow attacks have been proposed.
As mentioned before, DEP is the most widely used. Challenges in Securing Embedded Devices: In most x86
However there are a lot of ARM based microcontrollers based defenses, it is acceptable to introduce the
that do not support DEP as this protection technique was performance overhead factor of 2x which is not an
only introduced in ARMv6 and newer architectures. embedded devices because of availability of low power
Two defense techniques are Address obfuscation [9] and and very limited resources. These limited resources
ASLR against ROP attacks. However, they suffer from include CPU cycles, memory and code size. These were
small randomization and have been shown to be the factors considered in the design of DisARM. With
vulnerable on 32-bit architectures. Instruction set respect to the limited cycles available, the modifications
randomization (ISR), another well-known defense done to the target binary cannot require too much
technique, has also been shown to have similar computation. The reason is that different embedded
limitations. Several fine-grained randomization techniques systems have strict deadlines that must be met and
have been proposed as a defense against code-reuse typically operate at very high CPU and memory usage
attacks such as ILR, In-place randomization, STIR, Marlin, already. Therefore any defense implementation cannot
XIFER, Librando, Code Shredding, ASR, Genesis, nop- have a large performance impact due to possible
have low overhead, they are considerably more invasive interrupts or deadlines that must be met in the protected
in often lead to instability in larger binaries. These applications. x86 vs ARM The x86 architecture’s calling
techniques are unable to account for different convention is set up to mainly use two instructions, one
optimization levels of binaries and are unable to protect to call a function and one to return from it. The call and ret
against code-injection based attacks. assembly instructions are the instructions that control the

Compiler based solutions that create code without flow for an application. In addition, there are jump
return instructions have also been proposed. However instructions that allow the execution to jump to an
those solutions are unable to handle ROP variants such address stored in a register. The ARM architecture
as jump oriented programming [10] attacks. Another has many differences in the way in which the flow is

DisARM, addresses these issues through the usage of a

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 162-168, 2016

167

controlled. The ARM architecture does not have a set of Code Randomization: Randomizing an application’s
instructions but it has something similar. The ARM executable code segment consists of two stages. First is
assembly used linking register, lr, that is updated the preprocessing stage that can be done just once per
when a function is called with the branch and link binary and is self-determining of consequent executions.
instruction bl where it works much similar like a call This stage involves disassembling a binary and extracting
instruction, with the difference that the return address is information about the function block and also the control
stored into the lr register, instead of being pushed onto flow. The second stage is the actual randomization stage
the stack as in x86. Programmer or compiler must make when the function blocks are shuffle and the jump/call
sure of the value is present or lost. ARM architecture targets are patched. We achieve this by drama jump
utilizes within the strategy that there is a special case to patching. Fine-grained address space present
highlight. If the function being utilized, then there will no randomization (ASLR) has recently been proposed as a
further function calls and so there will not be updating of method of efficiently extenuating runtime attacks. The
an lr register. challenge in this phase was designing and constructing

In order then for these functions to ‘return’, they a verification block that does not depend on any external
branch on the value stored in lr by executing the resources aside from the global hashmap and offset table
instruction bx lr. This implies that the value in lr has not in order to execute that validation. To accomplish this, we
changed since the beginning of the function. Due to this, followed the same line of attack that GCC compiler uses
even if there were a vulnerability within such a function, during compilation. Each constant used within the
the attacker would not be able to redirect the control verification block is appended to the end of the
since the lr register is never pushed onto the stack. verification block after the final branch.We introduce the
However this is not the case for extended nested function design and implementation of a framework based on a
calling for which the compiler has to push lr onto the novel attack strategy, dub just-in-time code reuse, that
stack in order to preserve the return address. Through the undermines the benefits of fine-grained ASLR.
combination of pushing lr onto the stack and branching, Specifically, we derail the assumptions embodied in
we get the same effect as a call in x86. To return a fine-grained ASLR by exploiting the ability to repeatedly
function, the ARM processor pops the value of the lr abuse a memory exposé to map an application’s memory
register into either the lr register or the PC from the stack. layout on-the-fly, dynamically discover API functions and
Once such action is executed, the program will start to gadgets and JIT-compile a objective agenda using those
execute the instruction at the address referenced by the gadgets—all within a writing environment at the time an
old value of the lr register which is the address from where exploit is launched. We show the power of our border by
the function was called from. By contrast in x86 the ret using it in combination with a real-world exploit against
instruction both pops off the stack the address to which Internet Explorer and also provide wide evaluations that
the execution has to jump and jumps to such address. demonstrate the practicality of just-in-time code reuse
Such characteristic of ARM simplifies our defense attacks. Our findings suggest that fine-grained ASLR may
techniques. Within DisARM we only need to look for and not be as promising as first thought.
verify any instruction that pops values into the lr register
or the PC as these are the entry points into the execution Code Reuse Attack: The attacker identifies small
flow of the program. sequences of binary instructions, called gadget, that end

File Deploying: And also arrange the each docks no is return addresses on the stack, the attacker can use
certified in a node. The intrusion detection (IDS) for a these gadgets to perform unpredictable multiplication.
WSN is defined to detect the presence of inappropriate, These attacks continued to evolve, with newer techniques
incorrect, or anomalous moving attackers. The path is is using gadgets that end in jmp or call instructions.
checked whether it is authorized or unauthorized. If path As these attacks rely on knowing the location of code in
is authorized the packet is send to valid destination. the executable and libraries, the sensitive solution is to
Otherwise the packet will be deleted. According port no randomize process memory images. In basic address
only we are going to find the path is authorized or space plan randomization (ASLR), the start address
Unauthorized. of the code segment is randomized. That is, two different

in a ret instruction. By placing a series of carefully crafted

Middle-East J. Sci. Res., 24 (Techniques and Algorithms in Emerging Technologies): 162-168, 2016

168

running instance would have a different base address, so REFERENCES
the addresses that an mugger needed to jump to in one
instance would not be the same as the addresses in the 1. Solar Designer, 1997. Getting around non-executable
other instance. Although said come near initially seemed stack (and fix)," Aug. 1997, http:// seclists.org/
promising, 32-bit machines provide inadequate entropy as bugtraq/ 1997/Aug/63.
there are only 216 possible starting addresses. This makes 2. Gupta, A., S. Kerr, M. Kirkpatrick and E. Bertino,
the approach vulnerable to beast-force attacks. 2013. Marlin: A fine grained randomization approach

Code Normalization: The relation offset of directions Netw. Syst. Security, 7873: 293-306.
within the application’s code are constant. That is, if an 3. Buchanan, E., R. Roemer, H. Shacham and S. Savage,
invader knows any symbol’s address in the submission 2008. When good instructions go bad: Generalizing
policy then the location of all gadgets and cipher in return-oriented programming to RISC, in Proc. 15
application’s codebase is deterministic. Protection ACM Conf. Comput. Commun. Security, pp: 27-38.
against usual ROP: The ROP contestant analyze the 4. Francillon, A. and C. Castelluccia, 2008. Code
code and construct the widget chain previous to the injection attacks on harvard-architecture devices,
execution of the under attack (vulnerable) application. in Proc. 15 ACM Conf. Comput. Commun. Security,
Hence, we require a mechanism that changes the pp: 15-26.
addresses of the gadgets and consequently breaks the 5. (2003). PaX Team. PaX [Online]. Available:
gadget chain. http://pax.grsecurity. net/

Conclusion and Future Work: To safe against rules- 2012. Marlin: Making it harder to fish for gadgets, in
recycle attack was to increase the entropy by randomizing Proc. ACM Conf. Comput. Commun. Security,
the meaning block. One may apply this randomization pp: 1016-1018.
system at various levels of granularity role level, block 7. Davi, L., A. Dmitrienko, A.R. Sadeghi and
level or gadget level. The level of granularity to want is a M. Winandy, 2011. Privilege escalation attacks
transaction between resistance and routine. In our on android, in Proc. 13 Int. Conf. Inf. Security,
implementation, we implemented the randomization at the pp: 346-360.
role level which is the most common granularity amongst 8. Shacham, H., M. Page, B. Pfaff, E.J. Goh,
the three mentioned above. However, we show that even N. Modadugu and D. Boneh, 2004. On the
this coarse level of granularity provide sizeable effectiveness of address-space randomization, in
randomization to make brute force attacks infeasible. Proc. 11th ACM Conf. Comput. Commun. Security,
Our model implementation requires the double to contain pp: 298-307.
symbol information, i.e. a non-nude binary. In put into 9. Shacham, H., 2007. The geometry of innocent flesh
practice however, binaries may be uncovered and not on the bone: Returninto- libc without function calls
contain the character information. Another draw near to (on the x86), in Proc. 14 ACM Conf. Comput.
method exposed binaries is to randomize at the level of Commun. Security, pp: 552-561.
elementary block since they do not require role secret 10. Aleph One, 1996. Smashing the stack for fun and
language to be known. Randomization of basic block profit, Phrack Mag., 49(14).
granularity will suffer higher runtime overhead because it 11. Hund, R., T. Holz and F.C. Freiling, 2009.
would smash the principle of area. One curb of Marlin is Return-oriented rootkits: Bypassing kernel code
that it is immobilized to properly redraft certain binaries if integrity protection mechanisms, in Proc. 18 Conf.
these goal binaries have certain compiler optimizations USENIX Security Symp., pp: 383-398.
enable or if they are obfuscated. This is because Marlin 12. Roglia, G., L. Martignoni, R. Paleari and D. Bruschi,
requires the :text section in the objective binary to be 2009. Surgically returning to randomized lib(c), in
prepared as meaning block and for these function block to Proc. Annu. Comput. Security Appl. Conf., pp: 60-69.
be evidently particular using a disassembler. In this work,
we proposed a fine-grained randomization based
approach to protect against code reuse attacks. This come
shut to randomizes the principle double with a curious
randomization for every jog.

to defend against ROP attacks, in Proc. 7 iNt. Conf.th

th

th

6. Gupta, A., S. Kerr, M.S. Kirkpatrick and E. Bertino,

th

th

th

