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Abstract: In this paper, the authors investigate the general solution in vector space and generalized Ulam-Hyers
stability of n-dimensional cubic functional equation

where

and n  6 is a positive integer using fuzzy normed space (FNS) and random normed space (RNS) by direct and
fixed point methods.

Key words: Fuzzy normed space  Random normed spaces  Cubic functional equation  Ulam -Hyers
stability  Fixed point method

INTRODUCTION (1.1)

The stability of functional equations originated from for all x, y  X. Then the limit
a question of S.M. Ulam [1] concerning the stability of
group homomorphisms. D.H. Hyers [2] gave a first
confirmatory part respond to the difficulty of Ulam for (1.2)
Banach spaces. He proved the following celebrated
theorem. exists for all x  X and a : X  Y is the unique additive

Theorem 1.1: [17] Let X, Y be Banach spaces and let f :X
 Y be a mapping satisfying (1.3)

mapping satisfying 



|| || || || by || || || || for  with ,  1.p p p qx y x y p q R p q+ ∈ + ≠
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(2 ) (2 ) = 2 ( ) 2 ( ) 12 ( ).f x y f x y f x y f x y f x+ + − + + − +

=1 =1 =1 1 <

=1
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2 (2 )
2

n n n

ij j i j
i j j i j n
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j
j

f x n f x f x x

n f x

≤ ≤
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∑

=
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x if i jj
xij x if i jj

−
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, , , ,1 2 3x x x x Xn ∈

( ) = ( , , )f x B x x x

, , , ,1 2 3x x x x Xn ∈

( , , , )1 2x x xn

( , , , , )1 2 3x x x xn ( , ,0, ,0)x x 

3(2 ) = 2 ( )f x f x

=1 =1 =1

1 < =1
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4 ( ) (4 8) ( )

n n n

ij j
i j j
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i j n j

f x n f x

f x x n f x
≤ ≤

   
   −
   
   

+ + − −

∑ ∑ ∑
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, , , ,1 2 3x x x x Xn ∈ ( , , , )1 2x x xn ( ,0, ,0)x 
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for all x  X. Moreover, if f(tx) is continuous in 1  R for
each fixed x  X, then the function a is linear.

Hyers’ theorem was generalized by T. Aoki [3] for
additive mappings and by Th.M. Rassias [4] for linear
mappings by considering an unbounded Cauchy
difference. The paper of Th.M.  Rassias  has  provided a (1.6)
lot of power in the improvement of what we call
generalized Hyers-Ulam stability of functional equations.
A generalization of the Th.M. Rassias theorem was
obtained by P. Gavruta [5] by replacing the unbounded
Cauchy difference by a general control function in the
spirit of Rassias approach. In 1982, J.M. Rassias [6]
followed the innovative approach of the Th.M. Rassias
theorem in which he replaced the factor

In 2008, a special case of Gavruta’s theorem for the
unbounded Cauchy difference was obtained by Ravi etal.,
[7] by considering the summation of both the sum and the
product of two p-norms in the sprit of Rassias approach.
The stability problems of numerous functional equations
have been expansively investigated by a number of
authors and there are many attractive outcome concerning
this problem (see [1, 11, 18, 21]). J.M. Rassias [8] first
introduced and proved the Ulam stability of a cubic
functional equation.

(1.4)

Also K.W. Jun and H.M. Kim [19] discussed the
generalized Hyers-Ulam-Rassias stability of a cubic
functional equation of the form 

(1.5)

During the last few decades, the stability problems of
several cubic functional equations in various spaces such
as Menger Probabilistic Normed Spaces, Random normed
spaces and Non-Archimedean Fuzzy normed spaces,
Banach spaces, orthogonal spaces etc. have been
extensively investigated by a number of mathematicians
(see [29, 30, 14, 41, 6, 8, 10, 31, 20, 42]). In this paper, the
authors investigate the general solution and generalized
Ulam-Hyers stability of n-dimensional cubic functional
equation

where

and n 6 is a positive integer using fuzzy (FNS) and
random normed spaces (RNS) by direct and fixed point
methods.

General Solution of the Functional Equation (1.6): In this
section, the authors present the general solution of the
cubic functional equation (6). Throughout this section let
us consider X and Y be real vector spaces.

Theorem 2.1: If f : X  Y is a function satisfying the
functional equation (1.6) for all  then
there exists a function B : X  Y such that 3

for all x  X where B is symmetric for each fixed one
variable and additive for each fixed two variables.

Theorem 2.2: If the mapping f : X  Y satisfies the
functional equation (1.6) for all  then f :
X  Y satisfying the functional equation (1.5) for all x, y 
X.

ProofL: Let f : X  Y satisfies (1.6). Setting  by
(0,0,...,0) in (1.6), we getf(0)= 0. Letting  by 
in (1.6), we obtain

(2.1)

for all x  X. Using (2.1) in (1.6), we get

(2.2)

for all . Replacing  by 
in (2.2), we have



( ) = ( )f x f x− −

( , , , , , )1 2 3 4x x x x xn
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f x x f x x
f x x f x f x

− + +
− + +

1 2
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nf x x f x
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∑ ∑
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( 4) ( , ) { ( , ), ( , )};F N x y s t min N x s N y t+ + ≥

( , ) = 1;lim N x tt→∞

( ),|| ||X ⋅
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, > 0, ,
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0, 0,

t t x X
t xN x t

t x X

 ∈ +
 ≤ ∈

( , ) =1lim N x x tn
n

−
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= .limN x xn
n

−
→∞

( , ) > 1 .N x x tn p n− −+

0 < <1
32
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( )( ) ( )( ), , , , , , , , ,N n x n x n x r N d x x x r′ ′≥ 
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(2.3)  (F6) for x 0, N(x;) is (upper semi) continuous on .

 for all x  X . Again replacing  by The pair (X, N) is called a fuzzy normed linear space.
 in (2.2), we arrive One may regard N(X, t) as the truth-value of the statement

(2.4)

for all x  X. In general for any positive integer m, f(mx) =
m f(x).3

Substituting  by  in (2.2),
we arrive

(2.5) Definition 3.3: Let (X, N) be a fuzzy normed linear space.

 for all x ,x X. Replacing x  by –x  in (2.5) and using convergent if there exists x  X such that 1 2 2 2

oddness of f we get,

(2.6)

for all x ,x X. Adding (2.5) and (2.6), we arrive (1.5). By1 2

Theorem 2.1 [19] we derived our result.
Throughout this paper, we use the following notation

for a given mapping f : X  Y such that 

for all x ,x ,. . . ,x X1 2 n

Preliminaries of Fuzzy Normed Spaces: We use the
definition of fuzzy normed spaces given in [7] and [24-27].

Definition 3.1: Let X be a real linear space. A function
(the so-called fuzzy subset) is said to be a

fuzzy norm on X if for all x, y  X and all s, t, ,
 (F1) N(x,c) = 0 for c 0;
 (F2) x = 0 if and only if N(x,c) = 1 for all c > 0;

 if c 0;

 (F5) N(x;) is a non-decreasing function on  and 

the norm of x is less than or equal to the real number t’.

Example 3.2: Let  be a normed linear space. Then

is a fuzzy norm on X.

Let x  be a sequence in X. Then x  is said to ben n

for all t > 0. In that case, x is called the limit of the
sequence x  and we denote it by n

Definition 3.4: A sequence x  in X is called Cauchy if forn

each  > 0 and each t > 0 there exists n  such that for all0

n  n  and all p > , we have 0

Definition 3.5: Every convergent sequence in a fuzzy
normed space is Cauchy. If each Cauchy sequence is
convergent, then the fuzzy norm is said to be complete
and the fuzzy normed space is called a fuzzy Banach
space.

Definition 3.6: A mapping f : X  Y between fuzzy normed
spaces X and Y is continuous at a point x  if for each0

sequence {x } covering to x  in X, the sequence f{x }n 0 n

converges to f(x ).  If f is continuous at each point of x0 0

X then f is said to be continuous on X.

Fuzzy Stability Results: Direct Method: Throughout this
section, assume that X(Z, N') and (Y, N) are linear space,
fuzzy normed space and fuzzy Banach space, respectively.

Now, we investigate the generalized Ulam-Hyers
stability of n-dimensional cubic functional equation (1.6).

Theorem 4.1: Let {–1,1} be fixed and let :X  Z ben

a mapping such that for some d with 

(4.1)



( )( )3
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n
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kk
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n→∞
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(4.2)

for all  and all r > 0. Suppose that a function f : X  Y satisfies the inequality 

(4.3)

 for all r > 0 and all . Then the limit 

(4.4)

 exists for all x  X and the mapping C : X  Y is a unique cubic mapping such that

(4.5)

for all x  X  and all r > 0.

Proof: First assume  = 1. Replacing  by  in (4.3), we get 

(4.6)

for all x  X and all r > 0. Replacing x by n  x in (4.6), we obtaink

(4.7)

for all x  X and all r > 0. Using (4.1), (F3) in (4.7), we arrive

(4.8)

for all x  X and all r > 0. It is easy to verify from (4.8), that

(4.9)

holds for all x  X and all r > 0. Replacing r by d  r in (4.9), we getk

(4.10)

for all x  X and all r > 0. It is easy to see that 
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(4.11)

for all x  X. From equations (4.10) and (4.11), we have

(4.12)

for all x  X  and all r > 0. Replacing x by n  x in (4.12) and using (4.1), (F3), we obtainm

(4.13)

for all x  X and all r > 0 and all m,k 0. Replacing r by d  x in (4.13), we get m

(4.14)

for all x  X and all r > 0 and all m,k 0. Using (F3) in (4.14), we obtain

(4.15)

for all x  X and all r > 0 and all m, k 0. Since 0 < d < n  and , the cauchy criterion for convergence and (F5)3

implies that  is a Cauchy sequence in (Y, N). Since (Y, N) is a fuzzy Banach space, this sequence converges to

some point C(x) Y. So one can define the mapping C : X  Y by

for all x  X Letting m = 0 in (4.15), we get
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(4.16)

for all x  X and all r > 0. Letting k  in (4.16) and using (F6), we arrive

for all x  X and all r > 0. To prove C satisfies the (1.6), replacing  by  in (4.3), respectively,
we obtain

(4.17)

for all r > 0 and all . Now,

(4.18)

for all  and all r > 0. Using (4.17) and (F5) in (4.18), we arrive
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for all  and all r > 0. Letting k  in (4.19) and using (4.2), we see that

(4.20)

for all  and all r > 0. Using (F2) in the above inequality gives

for all . Hence C satisfies the cubic functional equation (1.6). In order to prove C(x) is unique, let C'(x) be
another cubic functional equation satisfying (1.6) and (4.5). Hence,

for all x  X and all r > 0. Since

we obtain

for all x  X and all r > 0. Thus

for all x  X and all r > 0 , hence C(x) = C'(x). Therefore C(x) is unique.
For  = –1, we can prove the result by a similar method. This completes the proof of the theorem. 
From Theorem 4.1, we obtain the following corollary concerning the generalized Ulam-Hyers stability for the

functional equation (1.6).
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Corollary 4.2: Suppose that a function f :X  Y satisfies the inequality

for all  and all r > 0, where , s are constants with  > 0. Then there exists a unique cubic mapping C : X  Y
such that

Fuzzy Stability Results: Fixed Point Method: In this section, the authors presented the generalized Ulam - Hyers stability
of the functional equation (1.6) in Fuzzy normed space using fixed point method.
Now we will recall the fundamental results in fixed point theory.

Theorem 5.1: [23] (The alternative of fixed point) Suppose that for a complete generalized metric space (X, d) and a
strictly contractive mapping T : X  Y with Lipschitz constant L. Then, for each given element x  X either

  or

(B2) there exists a natural number n  such that:0

 for all n n ;0

The sequence (T x) is convergent to a fixed point y* of Tn

y* is the unique fixed point of T in the set 
 for all y  Y

In order to prove the stability result we define the following:  is a constant such that1

and  is the set such that 
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Theorem 5.2: Let f :X  Y be a mapping for which there exist a function : X  Z with the condition n

(5.1)

for all  and satisfying the functional inequality

(5.2)

for all . If there exists L = L(i) such that the function

has the property

(5.3)

Then there exists unique cubic function C : X  Y satisfying the functional equation (1.6) and

(5.4)

Proof: Let d be a general metric on  such that

It is easy to see that ( ,d) is complete.
Define  by  for all x  X

For g,h , we have d(g, h) k

(5.5)

for all g,h Therefore T is strictly contractive mapping on  with Lipschitz constant L Replacing  by
 in (5.2), we get

(5.6)

for all x  X, r > 0 Using (F3) in (5.6), we arrive

(5.7)
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for all x  X, r > 0 with the help of (5.3) when i = 0, it follows from (5.7), we get 

(5.8)

Replacing x by  in (5.6), we obtain

(5.9)

for all x  X, r > 0 with the help of (5.3) when i = 0, it follows from (5.9) we get 

(5.10)

Then from (5.8) and (5.10) we can conclude,

Now from the fixed point alternative in both cases, it follows that there exists a fixed point C of T in  such that

(5.11)

Replacing  by  in (5.2), we arrive

(5.12)

for all r > 0 and all .
By proceeding the same procedure as in the Theorem 4.1, we can prove the function, C : X  Y satisfies the

functional equation (1.6).
By fixed point alternative, since C is unique fixed point of T in the set

(5.13)

for all x  X, r > 0 and K > 0 Again using the fixed point alternative, we obtain 

(5.14)

for all x  X and r > 0. This completes the proof of the theorem.
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From Theorem 5.2, we obtain the following corollary concerning the stability for the functional equation (1.6).

Corollary 5.3: Suppose that a function f :X  Y satisfies the inequality

(5.15)

for all  and r > , where , s are constants with  > 0. Then there exists a unique cubic mapping C : X  Y such
that

(5.16)

for all x  X and all r > 0. 
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Thus, (5.1) is holds. But we have

 has the property

Hence

Now,
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Now from (5.4), we prove the following cases for conditions (i) and (I).

Case: 1 L = n  if i = 01

Case: 2 L = n  if i = 03

Case: 3 L = n  for s > 3 if i = 0s 3

Case: 4 L = n  for s > 3 if i = 03 s
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Case: 5 L = n  for  if i = 0ns 3

Case: 6 L = n for  if i = 03 ns

Hence the proof is complete.

Preliminaries of Random Normed Spaces: In the sequel, we adopt the usual terminology, notations and conventions
of the theory of random normed spaces as in [9, 38, 39].

Throughout this paper,  is the space of distribution functions, that is, the space of all mappings+

 such that F is leftcontinuous and nondecreasing on  and . D  is a subset of+ +

consisting of all functions  for which , where  denotes the left limit of the function f at the point
x that is, . The space  is partially ordered by the usual pointwise ordering of functions, that is, F G+

if and only if F(t) G(t) for all t  The maximal element for  in this order is the distribution function  given by+
0

(6.1)

Definition 6.1: [38] A mapping  is called a continuous triangular norm (briefly, a continuous t–
norm) if T satisfies the following conditions: 

T is commutative and associative; 
T is continuous; 
T(a, 1) = a for all a  [0, 1];
T(a, b) T(c, d) whenever a c and b d for all a,b,c,d  [0,1]

Typical examples of continuous  norms are  and 
(the Lukasiewicz n-norm). Recall (see [15, 16]) that if T is a t-norm and x  is a given sequence of numbers in [0,1] thenn

 is defined recurrently by 

 is defined as . It is known [16] that, for the Lukasiewicz t-norm, the

following implication holds:

(6.2)
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Definition 6.2: [39] A random normed space (briefly, RN-space) is a triple (X, µ,T), where X is a vector space, T is a
continuous t-norm and µ is a mapping from X into D  satisfying the following conditions:+

 for all r > 0 if and only if x = 0;
 for all x  X and  with 0;

 for all x, y  X and t,s 0.

Example 6.3: Every normed spaces  defines a random normed space , where

and T  is the minimum t-norm. This space is called the induced random normed space.M

Definition 6.4: Let (X, µ,T) be a RN-space.
A sequence {x } in X is said to be convergent to a point x  X if, for any > 0 and > 0, there exists a positiven

integer N such that  for all n N.
A sequence {x } in X is called a Cauchy sequence if, for any > 0 and > 0, there exists a positive integer N suchn

that  for all .
A RN-space  is said to be complete if every Cauchy sequence in X is convergent to a point in X.

Theorem 6.5: If (X, µ,T) is a RN-space and {x } is a sequence in X such that x  x, then  almostn n

everywhere.

Random Stability Results: Direct Method: In this section, the generalized Ulam - Hyers stability of the Cubic functional
equation (1.6) in RN-space is provided. Throughout this section, let us consider X be a linear space and (X, µ,T) is a
complete RN-space. The proof of the following Theorem and Corollary is similar to that of results of the Section 4 and
5. Hence the details of the proof are omitted.

Theorem 7.1: Let j=±1. Let f : X  Y be a mapping for which there exist a function :X  D  with the conditionn +

(7.1)

for all  and all t > 0. such that the functional inequality with  such that 

(7.2)

for all  and all t>0. Then there exists a unique cubic mapping C :X Y satisfying the functional equation (1.6)
and

(7.3)

for all x  X and all t > 0. The mapping C(x) is defined by 
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(7.4)

for all x  X and all t > 0. 

Proof: Assume j = 1. Setting  in (7.1), we get 

(7.5)

for all x  X and all t > 0. It follows from (7.5) and (RN2), we have 

(7.6)

for all x  X and all t > 0. Replacing x by n x in (7.6), we arrivek

(7.7)

for all x  X and all t > 0. The rest of the proof is similar to that of Theorem 4.1. 
The following Corollary is an immediate consequence of Theorem 7.1, concerning the stability of (1.6).

Corollary 7.2: Let  and s be nonnegative real numbers. Let a cubic function f :X  Y satisfies the inequality

(7.8)

for all  and all t > 0. Then there exists a unique cubic function C :X  Y such that 

(7.9)



( )3
1 2, , ,1 2

= 1, , , , , > 0lim k
k k k i nx x xk i i i n

t x x x X t
→∞

∀ ∈




( , , , ) , , , 1 21 2 1 2
( ) ( ), , , , , > 0.Df x x x x x x nn n
t t x x x X t≥ ∀ ∈  

, , ,
( , ) = (( 6) ),x x x

n n n

x x t n t→ −


( )3
1( , ) , , , > 0.i
i

x t L x t x X t≤ ∀ ∈

1

( ) ( ) ( , ), , > 0.
1

i

C x f x
L t x t x X t

L

−

−
 

≥ ∀ ∈  − 

( ) ( )(0, ) | ( )
( , ) = .

( , ), , > 0
g x h xK Kt

d g h inf
x t x X t

−∈ ∞  
 
≥ ∈  

1( ) = ( ),
3

Tg x g xi
i

( )
( )

( ) ( )

( ) ( ) 3

( , ) ( ) ( , )

 ( , )

 ( ), ( )

 , ( , )

g x h x

Tg x Th x
i

d g h K Kt x t

Kt x t

d Tg x Th x KL

d Tg Th Ld g h

−

−

≤ ⇒ ≥

 
⇒ ≥   
⇒ ≤

⇒ ≤

Middle-East J. Sci. Res., 24 (S2): 386-404, 2016

402

for all x  X and all t > 0. 

Random Stability Results: Fixed Point Method: In this section, the authors present the generalized Ulam - Hyers stability
of the functional equation (1.6) in Random normed space using fixed point method.

Theorem 8.1: Let f :X  Y be a mapping for which there exist a function  :X  D  with the condition n +

(8.1)

and satisfying the functional inequality

(8.2)

If there exists L = L(i) such that the function 

has the property

(8.3)

Then there exists a unique cubic function C :X  Y satisfying the functional equation (1.6) and 

(8.4)

Proof: Let d be a general metric on  such that

It is easy to see that ( d) is complete. Define T :  by  for all x  X Now for g,h , we have d(g,h) k

(8.5)

for all g,h  Therefore T is strictly contractive mapping on  with Lipschitz constant L The rest of the proof is similar
to that of Theorem 5.2.



|| ||

=1

( , , , )1 2 || ||

=1

|| || || ||

=1=1

( ),
( ), 3;

3( ), ;( )

3( ), ;

n
sxi

i

n
Df x x x sn xi

i

n n
s nsx xi i

ii

t
t s

t st n

t s
n 

 + 
  


 ≠



 ≠≥ 



 ≠




∑

∏

∑∏



, , ,1 2x x x Xn ∈

( )

( )

( )

( )

3( 6)| 1|

|| ||3( 6)| |
( ) ( )

|| ||3( 6)| |

( 1) || ||3( 6)| |

,

,

( )
,

n n

n sxsn n n
f x C x

nsxnsn n n

n nsxnsn n n

t

t

t
t

t

− −

− −
−

− −

+

− −






≥ 







( )

( )

( )

( )

3( 6)| 1|

|| ||
3( 6)| |

( ) ( )

|| ||3( 6)| |

( 1) || ||3( 6)| |

,

,

( )
,

n n

n sxsn n n
f x C x

nsxnsn n n

n nsxnsn n n

t

t

t
t

t

− −

− −
−

− −

+

− −






≥ 







, , ,1 2x x x Xn ∈

Middle-East J. Sci. Res., 24 (S2): 386-404, 2016

403

From Theorem 8.1, we obtain the following corollary concerning the stability for the functional equation (1.6).

Corollary 8.2: Suppose that a function f :X  Y satisfies the inequality

(8.6)

for all  and t > 0, where , s are constants with  > 0. Then there exists a unique cubic mapping C :X  Y such
that

(8.7)

for all x  X and all t > 0. 

Proof: Setting

for all  and all t > 0. The rest of the proof is similar to that of Corollary 5.3.
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