Generalized Ulam-Hyers Stability of N-Dimensional Cubic Functional Equation in FNS and RNS: Various Methods

${ }^{I}$ M. Arunkumar, ${ }^{2}$ S. Karthikeyan and ${ }^{3}$ S. Ramamoorthi
${ }^{1}$ Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, Tamil Nadu, India
${ }^{2}$ Department of Mathematics, R.M.K. Engineering College, Kavaraipettai - 601 206, Tamil Nadu, India
${ }^{3}$ Department of Mathematics, Arunai Engineering College, Tiruvannamalai - 606 604, TamilNadu, India

$$
\begin{aligned}
& \text { stability of } n \text {-dimensional cubic functional equation } \\
& \begin{aligned}
\sum_{i=1}^{n} f\left(\sum_{j=1}^{n} x_{i j}\right) & =(n-6) f\left(\sum_{j=1}^{n} x_{j}\right)+4 \sum_{1 \leq i<j \leq n} f\left(x_{i}+x_{j}\right) \\
& -\left(\frac{n-2}{2}\right) \sum_{j=1}^{n} f\left(2 x_{j}\right)
\end{aligned} \\
& \text { where } x_{i j}=\left\{\begin{array}{rrr}
-x_{j} & \text { if } & i=j \\
x_{j} & \text { if } & i \neq j
\end{array}\right.
\end{aligned}
$$

Abstract: In this paper, the authors investigate the general solution in vector space and generalized Ulam-Hyers
and $n \neq 6$ is a positive integer using fuzzy normed space (FNS) and random normed space (RNS) by direct and fixed point methods.

Key words: Fuzzy normed space • Random normed spaces • Cubic functional equation • Ulam -Hyers stability • Fixed point method

INTRODUCTION

The stability of functional equations originated from a question of S.M. Ulam [1] concerning the stability of group homomorphisms. D.H. Hyers [2] gave a first confirmatory part respond to the difficulty of Ulam for Banach spaces. He proved the following celebrated theorem.

Theorem 1.1: [17] Let X, Y be Banach spaces and let $f: X$ $\rightarrow Y$ be a mapping satisfying
$\|f(x+y)-f(x)-f(y)\| \leq \varepsilon$
for all $x, y \in X$. Then the limit
$a(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$
exists for all $x \in X$ and $a: X \rightarrow Y$ is the unique additive mapping satisfying
$\|f(x)-a(x)\| \leq \varepsilon$

Corresponding Author: M. Arunkumar, Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, Tamil Nadu, India.
for all $x \in X$. Moreover, if $f(t x)$ is continuous in $1 \epsilon R$ for each fixed $x \in X$, then the function a is linear.

Hyers' theorem was generalized by T. Aoki [3] for additive mappings and by Th.M. Rassias [4] for linear mappings by considering an unbounded Cauchy difference. The paper of Th.M. Rassias has provided a lot of power in the improvement of what we call generalized Hyers-Ulam stability of functional equations. A generalization of the Th.M. Rassias theorem was obtained by P. Gavruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias approach. In 1982, J.M. Rassias [6] followed the innovative approach of the Th.M. Rassias theorem in which he replaced the factor

$$
\|x\|^{p}+\|y\|^{p} \text { by }\|x\|^{p}\|y\|^{q} \text { for with } p, q \in R p+q \neq 1
$$

In 2008, a special case of Gavruta's theorem for the unbounded Cauchy difference was obtained by Ravi etal., [7] by considering the summation of both the sum and the product of two p-norms in the sprit of Rassias approach. The stability problems of numerous functional equations have been expansively investigated by a number of authors and there are many attractive outcome concerning this problem (see [1, 11, 18, 21]). J.M. Rassias [8] first introduced and proved the Ulam stability of a cubic functional equation.

$$
\begin{equation*}
c(x+2 y)+3 c(x)=3 c(x+y)+c(x-y)+6 c(y) \tag{1.4}
\end{equation*}
$$

Also K.W. Jun and H.M. Kim [19] discussed the generalized Hyers-Ulam-Rassias stability of a cubic functional equation of the form

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) . \tag{1.5}
\end{equation*}
$$

During the last few decades, the stability problems of several cubic functional equations in various spaces such as Menger Probabilistic Normed Spaces, Random normed spaces and Non-Archimedean Fuzzy normed spaces, Banach spaces, orthogonal spaces etc. have been extensively investigated by a number of mathematicians (see $[29,30,14,41,6,8,10,31,20,42]$). In this paper, the authors investigate the general solution and generalized Ulam-Hyers stability of n-dimensional cubic functional equation

$$
\begin{align*}
\sum_{i=1}^{n} f\left(\sum_{j=1}^{n} x_{i j}\right) & =(n-6) f\left(\sum_{j=1}^{n} x_{j}\right)+4 \sum_{1 \leq i<j \leq n} f\left(x_{i}+x_{j}\right) \\
& -\left(\frac{n-2}{2}\right) \sum_{j=1}^{n} f\left(2 x_{j}\right) \tag{1.6}
\end{align*}
$$

where $x_{i j}=\left\{\begin{array}{rll}-x_{j} & \text { if } & i=j \\ x_{j} & \text { if } & i \neq j\end{array}\right.$
and $n \neq 6$ is a positive integer using fuzzy (FNS) and random normed spaces (RNS) by direct and fixed point methods.

General Solution of the Functional Equation (1.6): In this section, the authors present the general solution of the cubic functional equation (6). Throughout this section let us consider X and Y be real vector spaces.

Theorem 2.1: If $f: X \rightarrow Y$ is a function satisfying the functional equation (1.6) for all $x_{1}, x_{2}, x_{3}, \cdots, x_{n} \in X$ then there exists a function $B: X^{3} \rightarrow Y$ such that $f(x)=B(x, x, x)$ for all $x \in X$ where B is symmetric for each fixed one variable and additive for each fixed two variables.

Theorem 2.2: If the mapping $f: X \rightarrow Y$ satisfies the functional equation (1.6) for all $x_{1}, x_{2}, x_{3}, \cdots, x_{n} \in X$ then f : $X \rightarrow Y$ satisfying the functional equation (1.5) for all $x, y \epsilon$ X.

ProofL: Let $f: X \rightarrow Y$ satisfies (1.6). Setting $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ by $(0,0, \ldots, 0)$ in (1.6), we get $(0)=0$. Letting $\left(x_{1}, x_{2}, x_{3}, \cdots, x_{n}\right)$ by $(x, x, 0, \cdots, 0)$ in (1.6), we obtain
$f(2 x)=2^{3} f(x)$
for all $x \in X$. Using (2.1) in (1.6), we get

$$
\begin{align*}
\sum_{i=1}^{n} f\left(\sum_{j=1}^{n} x_{i j}\right) & =(n-6) f\left(\sum_{j=1}^{n} x_{j}\right) \tag{2.2}\\
+4 & \sum_{1 \leq i<j \leq n} f\left(x_{i}+x_{j}\right)-(4 n-8) \sum_{j=1}^{n} f\left(x_{j}\right)
\end{align*}
$$

for all $x_{1}, x_{2}, x_{3}, \cdots, x_{n} \in X$. Replacing $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ by $(x, 0, \cdots, 0)$ in (2.2), we have
$f(-x)=-f(x)$
for all $x \in X$. Again replacing $\left(x_{1}, x_{2}, x_{3}, x_{4}, \cdots, x_{n}\right)$ by $(x, x, x, 0, \cdots, 0)$ in (2.2), we arrive
$f(3 x)=3^{3} f(x)$
for all $x \in X$. In general for any positive integer $m, f(m x)=$ $m^{3} f(x)$.

Substituting ($x_{1}, x_{2}, x_{3}, x_{4}, \cdots, x_{n}$) by ($x_{2}, x_{1}, x_{1}, 0, \cdots, 0$) in (2.2), we arrive

$$
\begin{align*}
3 f\left(2 x_{1}+x_{2}\right)+ & f\left(2 x_{1}-x_{2}\right) \\
& =8 f\left(x_{1}+x_{2}\right)+24 f\left(x_{1}\right)-6 f\left(x_{2}\right) \tag{2.5}
\end{align*}
$$

for all $x_{1}, x_{2} \in X$. Replacing x_{2} by $-x_{2}$ in (2.5) and using oddness of f we get,

$$
\begin{align*}
3 f\left(2 x_{1}-x_{2}\right)+ & f\left(2 x_{1}+x_{2}\right) \\
& =8 f\left(x_{1}-x_{2}\right)+24 f\left(x_{1}\right)+6 f\left(x_{2}\right) \tag{2.6}
\end{align*}
$$

for all $x_{1}, x_{2} \in X$. Adding (2.5) and (2.6), we arrive (1.5). By Theorem 2.1 [19] we derived our result.

Throughout this paper, we use the following notation for a given mapping $f: X \rightarrow Y$ such that

$$
\begin{aligned}
D f\left(x_{1}, x_{2}, \cdots, x_{n}\right)= & \sum_{i=1}^{n} f\left(\sum_{j=1}^{n} x_{i j}\right)-(n-6) f\left(\sum_{j=1}^{n} x_{j}\right) \\
& -4 \sum_{1 \leq i<j \leq n} f\left(x_{i}+x_{j}\right)+\frac{(n-2)}{2} \sum_{j=1}^{n} f\left(2 x_{j}\right)
\end{aligned}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$
Preliminaries of Fuzzy Normed Spaces: We use the definition of fuzzy normed spaces given in [7] and [24-27].

Definition 3.1: Let X be a real linear space. A function $N: X \times \mathbb{R} \rightarrow[0,1]$ (the so-called fuzzy subset) is said to be a fuzzy norm on X if for all $x, y \in X$ and all $s, t, \in \mathbb{R}$,
$(F 1) N(x, c)=0$ for $c \leq 0$;
(F2) $x=0$ if and only if $N(x, c)=1$ for all $c>0$;
(F3) $N(c x, t)=N\left(x, \frac{t}{|c|}\right)$ if $c \neq 0$;
(F4) $N(x+y, s+t) \geq \min \{N(x, s), N(y, t)\}$;
(F5) $N(x ;$; is a non-decreasing function on \mathbb{R} and $\lim _{t \rightarrow \infty} N(x, t)=1$;
(F6) for $x \neq 0, N(x ;$) is (upper semi) continuous on \mathbb{R}.
The pair (X, N) is called a fuzzy normed linear space. One may regard $N(X, t)$ as the truth-value of the statement the norm of x is less than or equal to the real number t.

Example 3.2: Let $(x,\|\cdot\|)$ be a normed linear space. Then
$N(x, t)= \begin{cases}\frac{t}{t+\|x\|}, & t>0, x \in X, \\ 0, & t \leq 0, x \in X\end{cases}$
is a fuzzy norm on X.

Definition 3.3: Let (X, N) be a fuzzy normed linear space. Let x_{n} be a sequence in X. Then x_{n} is said to be convergent if there exists $x \in X$ such that $\lim _{n \rightarrow \infty} N\left(x_{n}-x, t\right)=1$
for all $t>0$. In that case, x is called the limit of the sequence X_{n} and we denote it by $N-\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 3.4: A sequence x_{n} in X is called Cauchy if for each $\varepsilon>0$ and each $t>0$ there exists n_{0} such that for all $n \geq n_{0}$ and all $p>$, we have $N\left(x_{n+p}-x_{n}, t\right)>1-\varepsilon$.

Definition 3.5: Every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

Definition 3.6: A mapping $f: X \rightarrow Y$ between fuzzy normed spaces X and Y is continuous at a point x_{0} if for each sequence $\left\{x_{n}\right\}$ covering to x_{0} in X, the sequence $f\left\{x_{n}\right\}$ converges to $f\left(x_{0}\right)$. If f is continuous at each point of $x_{0} \epsilon$ X then f is said to be continuous on X.

Fuzzy Stability Results: Direct Method: Throughout this section, assume that $X\left(Z, N^{\prime}\right)$ and (Y, N) are linear space, fuzzy normed space and fuzzy Banach space, respectively.

Now, we investigate the generalized Ulam-Hyers stability of n-dimensional cubic functional equation (1.6).

Theorem 4.1: Let $\beta \in\{-1,1\}$ be fixed and let $\alpha: X^{n} \rightarrow Z$ be a mapping such that for some d with $0<\left(\frac{d}{2^{3}}\right)^{\beta}<1$

$$
\begin{equation*}
N^{\prime}\left(\alpha\left(n^{\beta} x, n^{\beta} x, \cdots, n^{\beta} x,\right), r\right) \geq N^{\prime}\left(d^{\beta} \alpha(x, x, \cdots, x), r\right) \tag{4.1}
\end{equation*}
$$

for all $x \in X$ and all $r>0, d>0$ and $\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(n^{\beta k} x_{1}, n^{\beta k} x_{2}, \cdots, n^{\beta k} x_{n}\right), n^{\beta 3 k} r\right)=1$
for all ${ }_{x_{1}, x_{2}, \cdots, x_{n} \in X}$ and all $r>0$. Suppose that a function $f: X \rightarrow Y$ satisfies the inequality
$N\left(D f\left(x_{1}, x_{2}, \cdots, x_{n}\right), r\right) \geq N^{\prime}\left(\alpha\left(x_{1}, x_{2}, \cdots, x_{n}\right), r\right)$
for all $r>0$ and all $x_{1}, x_{2}, \cdots, x_{n} \in X$. Then the limit
$C(x)=N-\lim _{k \rightarrow \infty} \frac{f\left(n^{\beta k} x\right)}{n^{\beta 3 k}}$
exists for all $x \in X$ and the mapping $C: X \rightarrow Y$ is a unique cubic mapping such that
$N(f(x)-C(x), r) \geq N^{\prime}\left(\alpha(x, x, \cdots, x), r(n-6)\left|n^{3}-d\right|\right)$
for all $x \in X$ and all $r>0$.
Proof: First assume $\beta=1$. Replacing $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ by (x, x, \cdots, x) in (4.3), we get

$$
\begin{equation*}
N\left((n-6) f(n x)-n^{3}(n-2) f(x), r\right) \geq N^{\prime}(\alpha(x, x, \cdots, x), r) \tag{4.6}
\end{equation*}
$$

for all $x \in X$ and all $r>0$. Replacing x by $n^{k} x$ in (4.6), we obtain
$N\left(\frac{f\left(n^{k+1} x\right)}{n^{3}}-f\left(n^{k} x\right), \frac{r}{(n-6) n^{3}}\right) \geq N^{\prime}\left(\alpha\left(n^{k} x, n^{k} x, \cdots, n^{k} x\right), r\right)$
for all $x \in X$ and all $r>0$. Using (4.1), (F3) in (4.7), we arrive

$$
\begin{equation*}
N\left(\frac{f\left(n^{k+1} x\right)}{n^{3}}-f\left(n^{k} x\right), \frac{r}{(n-6) n^{3}}\right) \geq N^{\prime}\left(\alpha(x, x, \cdots, x), \frac{r}{d^{k}}\right) \tag{4.8}
\end{equation*}
$$

for all $x \epsilon X$ and all $r>0$. It is easy to verify from (4.8), that

$$
\begin{equation*}
N\left(\frac{f\left(n^{k+1} x\right)}{n^{3(k+1)}}-\frac{f\left(n^{k} x\right)}{n^{3 k}}, \frac{r}{(n-6) n^{3} \cdot n^{3 k}}\right) \geq N^{\prime}\left(\alpha(x, x, \cdots, x), \frac{r}{d^{k}}\right) \tag{4.9}
\end{equation*}
$$

holds for all $x \in X$ and all $r>0$. Replacing r by $d^{k} r$ in (4.9), we get

$$
\begin{equation*}
N\left(\frac{f\left(n^{k+1} x\right)}{n^{3(k+1)}}-\frac{f\left(n^{k} x\right)}{n^{3 k}}, \frac{d^{k} r}{(n-6) n^{3} \cdot n^{3 k}}\right) \geq N^{\prime}(\alpha(x, x, \cdots, x), r) \tag{4.10}
\end{equation*}
$$

for all $x \in X$ and all $r>0$. It is easy to see that

$$
\begin{equation*}
\frac{f\left(n^{k} x\right)}{n^{3 k}}-f(x)=\sum_{i=0}^{k-1}\left[\frac{f\left(n^{i+1} x\right)}{n^{3(i+1)}}-\frac{f\left(n^{i} x\right)}{n^{3 i}}\right] \tag{4.11}
\end{equation*}
$$

for all $x \in X$. From equations (4.10) and (4.11), we have

$$
\begin{align*}
& N\left(\frac{f\left(n^{k} x\right)}{n^{3 k}}-f(x), \sum_{i=0}^{k-1} \frac{d^{i} r}{(n-6) n^{3} \cdot n^{3 i}}\right) \geq \min \bigcup_{i=0}^{k-1}\left\{\frac{f\left(n^{i+1} x\right)}{n^{3(i+1)}}-\frac{f\left(n^{i} x\right)}{n^{3 i}}, \frac{d^{i} r}{(n-6) n^{3} \cdot n^{3 i}}\right\} \\
& \geq \min \bigcup_{i=0}^{k-1}\left\{N^{\prime}(\alpha(x, x, \cdots, x), r)\right\} \quad \geq N^{\prime}(\alpha(x, x, \cdots, x), r) \tag{4.12}
\end{align*}
$$

for all $x \in X$ and all $r>0$. Replacing x by $n^{m} x$ in (4.12) and using (4.1), (F3), we obtain

$$
\begin{array}{r}
N\left(\frac{f\left(n^{k+m} x\right)}{n^{3(k+m)}}-\frac{f\left(n^{m} x\right)}{n^{3 m}}, \sum_{i=0}^{k-1} \frac{d^{i} r}{(n-6) n^{3} \cdot n^{3(i+m)}}\right) \tag{4.13}\\
\geq N^{\prime}\left(\alpha(x, x, \cdots, x), \frac{r}{d^{m}}\right)
\end{array}
$$

for all $x \in X$ and all $r>0$ and all $m, k \geq 0$. Replacing r by $d^{m} x$ in (4.13), we get

$$
\begin{align*}
& N\left(\frac{f\left(n^{k+m} x\right)}{n^{3(k+m)}}-\frac{f\left(n^{m} x\right)}{n^{3 m}}\right.\left., \sum_{i=m}^{m+k-1} \frac{d^{i} r}{(n-6) n^{3} \cdot n^{3 i}}\right) \tag{4.14}\\
& \geq N^{\prime}(\alpha(x, x, \cdots, x), r)
\end{align*}
$$

for all $x \in X$ and all $r>0$ and all $m, k \geq 0$. Using (F3) in (4.14), we obtain

$$
\begin{equation*}
N\left(\frac{f\left(n^{k+m} x\right)}{n^{3(k+m)}}-\frac{f\left(n^{m} x\right)}{n^{3 m}}, r\right) \geq N^{\prime}\left(\alpha(x, x, \cdots, x), \frac{r}{\sum_{i=m}^{m+k-1} \frac{d^{i}}{(n-6) n^{3} \cdot n^{3 i}}}\right) \tag{4.15}
\end{equation*}
$$

for all $x \in X$ and all $r>0$ and all $m, k \geq 0$. Since $0<d<n^{3}$ and $\sum_{i=0}^{k}\left(\frac{d}{n^{3}}\right)^{i}<\infty$, the cauchy criterion for convergence and (F5) implies that $\left\{\frac{f\left(n^{k} x\right)}{n^{3 k}}\right\}$ is a Cauchy sequence in (Y, N). Since (Y, N) is a fuzzy Banach space, this sequence converges to some point $C(x) \in Y$. So one can define the mapping $C: X \rightarrow Y$ by

$$
C(x)=N-\lim _{k \rightarrow \infty} \frac{f\left(n^{k} x\right)}{n^{3 k}}
$$

for all $x \in X$ Letting $m=0$ in (4.15), we get

$$
\begin{equation*}
N\left(\frac{f\left(n^{k} x\right)}{n^{3 k}}-f(x), r\right) \geq N^{\prime}\left(\alpha(x, x, \cdots, x), \frac{r}{\sum_{i=0}^{k-1} \frac{d^{i}}{(n-6) n^{3} \cdot n^{3 i}}}\right) \tag{4.16}
\end{equation*}
$$

for all $x \in X$ and all $r>0$. Letting $k \rightarrow \infty$ in (4.16) and using (F6), we arrive
$N(f(x)-C(x), r) \geq N^{\prime}\left(\alpha(x, x, \cdots, x),(n-6) r\left(n^{3}-d\right)\right)$
for all $x \in X$ and all $r>0$. To prove C satisfies the (1.6), replacing ($x_{1}, x_{2}, \cdots, x_{n}$) by $\left(n^{k} x_{1}, n^{k} x_{2}, \cdots, n^{k} x_{n}\right)$ in (4.3), respectively, we obtain
$N\left(\frac{1}{n^{3 k}} D f\left(n^{k} x_{1}, \cdots, n^{k} x_{n}\right), r\right) \geq N^{\prime}\left(\alpha\left(n^{k} x_{1}, \cdots, n^{k} x_{n}\right), n^{3 k} r\right)$
for all $r>0$ and all $x_{1}, \cdots, x_{n} \in X$. Now,

$$
\begin{align*}
& N\left(\sum_{i=1}^{n} C\left(\sum_{j=1}^{n} x_{i j}\right)-(n-6) C\left(\sum_{j=1}^{n} x_{j}\right)-4 \sum_{1 \leq i<j \leq n} C\left(x_{i}+x_{j}\right)\right. \\
& \left.+\frac{(n-2)}{2} \sum_{j=1}^{n} C\left(2 x_{j}\right), r\right) \\
& \geq \min \left\{N\left(\sum_{i=1}^{n} C\left(\sum_{j=1}^{n} x_{i j}\right)-\frac{1}{n^{3 k}} \sum_{i=1}^{n} f\left(\sum_{j=1}^{n} n^{k} x_{i j}\right), \frac{r}{5}\right),\right. \\
& N\left(-(n-6) C\left(\sum_{j=1}^{n} x_{j}\right)+\frac{(n-6)}{n^{3 k}} f\left(\sum_{j=1}^{n} n^{k} x_{j}\right), \frac{r}{5}\right) \text {, } \\
& N\left(-4 \sum_{1 \leq i<j \leq n} C\left(x_{i}+x_{j}\right)+\frac{4}{n^{3 k}} \sum_{1 \leq i<j \leq n} f\left(n^{k}\left(x_{i}+x_{j}\right)\right), \frac{r}{5}\right), N\left(\frac{(n-2)}{2} \sum_{j=1}^{n} C\left(2 x_{j}\right)-\frac{1}{n^{3 k}}\left(\frac{n-2}{2}\right) \sum_{j=1}^{n} f\left(n^{k}\left(2 x_{j}\right)\right), \frac{r}{5}\right) \text {, } \\
& \left.\left.-\frac{4}{n^{3 k}} \sum_{1 \leq i<j \leq n} f\left(n^{k}\left(x_{i}+x_{j}\right)\right)+\frac{1}{n^{3 k}} \frac{(n-2)}{2} \sum_{j=1}^{n} f\left(n^{k}\left(2 x_{j}\right)\right), \frac{r}{5}\right)\right\} \tag{4.18}
\end{align*}
$$

for all $x_{1}, \cdots, x_{n} \in X$ and all $r>0$. Using (4.17) and (F5) in (4.18), we arrive

$$
\begin{align*}
& N\left(\sum_{i=1}^{n} C\left(\sum_{j=1}^{n} x_{i j}\right)-(n-6) C\left(\sum_{j=1}^{n} x_{j}\right)-4 \sum_{1 \leq i<j \leq n} C\left(x_{i}+x_{j}\right)\right. \\
& \left.+\frac{(n-2)}{2} \sum_{j=1}^{n} C\left(2 x_{j}\right), r\right) \geq \min \left\{1,1,1,1, N^{\prime}\left(\alpha\left(n^{k} x_{1}, \cdots, n^{k} x_{n}\right), n^{3 k} r\right)\right\} \\
& \geq N^{\prime}\left(\alpha\left(n^{k} x_{1}, \cdots, n^{k} x_{n}\right), n^{3 k} r\right) \tag{4.19}
\end{align*}
$$

for all $x_{1}, \cdots, x_{n} \in X$ and all $r>0$. Letting $k \rightarrow \infty$ in (4.19) and using (4.2), we see that

$$
\begin{gather*}
N\left(\sum_{i=1}^{n} C\left(\sum_{j=1}^{n} x_{i j}\right)-(n-6) C\left(\sum_{j=1}^{n} x_{j}\right)-4 \sum_{1 \leq i<j \leq n} C\left(x_{i}+x_{j}\right)\right. \\
\left.+\frac{(n-2)}{2} \sum_{j=1}^{n} C\left(2 x_{j}\right), r\right)=1 \tag{4.20}
\end{gather*}
$$

for all $x_{1}, \cdots, x_{n} \in X$ and all $r>0$. Using (F2) in the above inequality gives

$$
\begin{aligned}
\sum_{i=1}^{n} C\left(\sum_{j=1}^{n} x_{i j}\right)=(n-6) C(& \left.\sum_{j=1}^{n} x_{j}\right)+4 \sum_{1 \leq i<j \leq n} C\left(x_{i}+x_{j}\right) \\
& +\frac{(n-2)}{2} \sum_{j=1}^{n} C\left(2 x_{j}\right)
\end{aligned}
$$

for all $x_{1}, \cdots, x_{n} \in X$. Hence C satisfies the cubic functional equation (1.6). In order to prove $C(x)$ is unique, let $C^{\prime}(x)$ be another cubic functional equation satisfying (1.6) and (4.5). Hence,

$$
\begin{aligned}
& N\left(C(x)-C^{\prime}(x), r\right)=N\left(\frac{C\left(n^{k} x\right)}{n^{3 k}}-\frac{C^{\prime}\left(n^{k} x\right)}{n^{3 k}}, r\right) \geq \min \left\{N\left(\frac{C\left(n^{k} x\right)}{n^{3 k}}-\frac{f\left(n^{k} x\right)}{n^{3 k}}, \frac{r}{2}\right), N\left(\frac{f\left(n^{k} x\right)}{n^{3 k}}-\frac{C^{\prime}\left(n^{k} x\right)}{n^{3 k}}, \frac{r}{2}\right)\right\} \\
& \geq N^{\prime}\left(\alpha\left(n^{k} x, n^{k} x, \cdots, n^{k} x\right), \frac{(n-6) r n^{3 k}\left(n^{3}-d\right)}{2}\right) \geq N^{\prime}\left(\alpha(x, x, \cdots, x), \frac{(n-6) r n^{3 k}\left(n^{3}-d\right)}{2 d^{k}}\right)
\end{aligned}
$$

for all $x \in X$ and all $r>0$. Since
$\lim _{k \rightarrow \infty} \frac{(n-6) r n^{3 k}\left(n^{3}-d\right)}{2 d^{k}}=\infty$,
we obtain
$\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha(x, x, \cdots, x), \frac{(n-6) r n^{3 k}\left(n^{3}-d\right)}{2 d^{k}}\right)=1$.
for all $x \in X$ and all $r>0$. Thus
$N\left(C(x)-C^{\prime}(x), r\right)=1$
for all $x \in X$ and all $r>0$, hence $C(x)=C^{\prime}(x)$. Therefore $C(x)$ is unique.
For $\beta=-1$, we can prove the result by a similar method. This completes the proof of the theorem.
From Theorem 4.1, we obtain the following corollary concerning the generalized Ulam-Hyers stability for the functional equation (1.6).

Corollary 4.2: Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{aligned}
& N\left(D f\left(x_{1}, x_{2}, \ldots, x_{n}\right), r\right) \\
& \quad \geq \begin{cases}N^{\prime}(\varepsilon, r), \\
N^{\prime}\left(\varepsilon \sum_{i=1}^{n}\left\|x_{i}\right\|^{s}, r\right), & s \neq 3 \\
N^{\prime}\left(\varepsilon \prod_{i=1}^{n}\left\|x_{i}\right\|^{s}, r\right), & s \neq \frac{3}{n} ; \\
N^{\prime}\left(\varepsilon\left(\prod_{i=1}^{n}\left\|x_{i}\right\|^{s}+\sum_{i=1}^{n}\left\|x_{i}\right\|^{n s}\right), r\right), & s \neq \frac{3}{n}\end{cases}
\end{aligned}
$$

for all $x_{1}, \cdots, x_{n} \in X$ and all $r>0$, where ε, s are constants with $\varepsilon>0$. Then there exists a unique cubic mapping $C: X \rightarrow Y$ such that

$$
N(f(x)-C(x), r) \geq\left\{\begin{array}{l}
N^{\prime}\left(\varepsilon,(n-6)\left|n^{3}-1\right| r\right), \\
N^{\prime}\left(n \varepsilon\|x\|^{s},(n-6)\left|n^{3}-n^{s}\right| r\right), \\
N^{\prime}\left(\varepsilon\|x\|^{n s},(n-6)\left|n^{3}-n^{n s}\right| r\right), \\
N^{\prime}\left((n+1) \varepsilon\|x\|^{n s},(n-6)\left|n^{3}-n^{n s}\right| r\right)
\end{array} \quad \text { for all } x \in X \text { and all } r>0 .\right.
$$

Fuzzy Stability Results: Fixed Point Method: In this section, the authors presented the generalized Ulam - Hyers stability of the functional equation (1.6) in Fuzzy normed space using fixed point method.
Now we will recall the fundamental results in fixed point theory.

Theorem 5.1: [23] (The alternative of fixed point) Suppose that for a complete generalized metric space (X, d) and a strictly contractive mapping $T: X \rightarrow Y$ with Lipschitz constant L. Then, for each given element $x \in X$ either
(B1) $d\left(T^{n} x, T^{n+1} x\right)=\infty \quad \forall n \geq 0$, or
(B2) there exists a natural number n_{0} such that:

- $\quad d\left(T^{n} x, T^{n+1} x\right)<\infty$ for all $n \geq n_{0}$;
- The sequence ($\left.T^{n} x\right)$ is convergent to a fixed point y^{*} of T
- y^{*} is the unique fixed point of T in the set $Y=\left\{y \in X: d\left(T^{n} 0_{x, y)}<\infty\right\}\right.$;
- $d\left(y^{*}, y\right) \leq \frac{1}{1-L} d(y, T y)$ for all $y \in Y$

In order to prove the stability result we define the following: δ_{1} is a constant such that
$\delta_{i}=\left\{\begin{array}{lll}n & \text { if } & i=0, \\ \frac{1}{n} & \text { if } & i=1\end{array}\right.$
and Ω is the set such that $\Omega=\{g \mid g: X \rightarrow Y, g(0)=0\}$.

Theorem 5.2: Let $f: X \rightarrow Y$ be a mapping for which there exist a function $\alpha: X^{n} \rightarrow Z$ with the condition
$\lim _{k \rightarrow \infty} N^{\prime}\left(\alpha\left(\delta_{i}^{k} x_{1}, \delta_{i}^{k} x_{2}, \cdots, \delta_{i}^{k} x_{n}\right), \delta_{i}^{3 k} r\right)=1$,
for all $x_{1}, x_{2}, \cdots, x_{n} \in X, r>0$ and satisfying the functional inequality
$N\left(D f\left(x_{1}, x_{2}, \cdots, x_{n}\right), r\right) \geq N^{\prime}\left(\alpha\left(x_{1}, x_{2}, \cdots, x_{n}\right), r\right)$,
for all $x_{1}, x_{2}, \cdots, x_{n} \in X, r>0$. If there exists $L=L(i)$ such that the function
$x \rightarrow \beta(x)=\frac{1}{n-6} \alpha\left(\frac{x}{n}, \frac{x}{n}, \cdots, \frac{x}{n}\right)$,
has the property
$N^{\prime}\left(L \frac{1}{\delta_{i}^{3}} \beta\left(\delta_{i} x\right), r\right)=N^{\prime}(\beta(x), r), \forall x \in X, r>0$.

Then there exists unique cubic function $C: X \rightarrow Y$ satisfying the functional equation (1.6) and
$N(f(x)-Q(x), r) \geq N^{\prime}\left(\frac{L^{1-i}}{1-L} \beta(x), r\right), \forall x \in X, r>0$.
Proof: Let d be a general metric on Ω such that
$d(g, h)=\inf \left\{\begin{array}{l}K \in(0, \infty) \mid N(g(x)-h(x), r) \\ \geq N^{\prime}(K \beta(x), r), x \in X, r>0\end{array}\right\}$.
It is easy to see that (Ω, d) is complete.
Define $T: \Omega \rightarrow \Omega$ by $\operatorname{Tg}(x)=\frac{1}{\delta_{i}^{3}} g\left(\delta_{i} x\right)$, for all $x \in X$
For $g, h \in \Omega$, we have $d(g, h) \leq k$
$\Rightarrow N(g(x)-h(x), r) \geq N^{\prime}(K \beta(x), r) \Rightarrow N\left(\frac{g\left(\delta_{i} x\right)}{\delta_{i}^{3}}-\frac{h\left(\delta_{i} x\right)}{\delta_{i}^{3}}, r\right) \geq N^{\prime}\left(\frac{K}{\delta_{i}^{3}} \beta\left(\delta_{i} x\right), r\right)$
$\Rightarrow N(T g(x)-T h(x), r) \geq N^{\prime}(K L \beta(x), r) \Rightarrow d(T g(x), T h(x)) \leq K L \Rightarrow d(T g, T h) \leq L d(g, h)$
for all $g, h \in \Omega$ Therefore T is strictly contractive mapping on Ω with Lipschitz constant L Replacing ($x_{1}, x_{2}, \cdots, x_{n}$) by (x, x, \cdots, x) in (5.2), we get
$N\left((n-6) f(n x)-n^{3}(n-6) f(x), r\right) \geq N^{\prime}(\alpha(x, x, \cdots, x), r)$.
for all $x \in X, r>0$ Using (F3) in (5.6), we arrive
$N\left(\frac{f(n x)}{n^{3}}-f(x), r\right) \geq N^{\prime}\left(\frac{1}{n^{3}(n-6)} \alpha(x, x, \cdots, x), r\right)$
for all $x \in X, r>0$ with the help of (5.3) when $i=0$, it follows from (5.7), we get

$$
\begin{align*}
& \Rightarrow N\left(\frac{f(n x)}{n^{3}}-f(x), r\right) \geq N^{\prime}(L \beta(x), r) \\
& \Rightarrow d(T f, f) \leq L=L^{1}=L^{1-i} \tag{5.8}
\end{align*}
$$

Replacing x by $\frac{x}{n}$ in (5.6), we obtain

$$
\begin{equation*}
N\left(f(x)-n^{3} f\left(\frac{x}{n}\right), r\right) \geq N^{\prime}\left(\frac{1}{(n-6)} \alpha\left(\frac{x}{n}, \frac{x}{n}, \cdots, \frac{x}{n}\right), r\right) \tag{5.9}
\end{equation*}
$$

for all $x \in X, r>0$ with the help of (5.3) when $i=0$, it follows from (5.9) we get

$$
\begin{align*}
& \Rightarrow N\left(f(x)-n^{3} f\left(\frac{x}{n}\right), r\right) \geq N^{\prime}(\beta(x), r) \\
& \Rightarrow d(f, T f) \leq 1=L^{0}=L^{1-i} \tag{5.10}
\end{align*}
$$

Then from (5.8) and (5.10) we can conclude,

$$
d(f, T f) \leq L^{1-i}<\infty
$$

Now from the fixed point alternative in both cases, it follows that there exists a fixed point C of T in Ω such that

$$
\begin{equation*}
C(x)=N-\lim _{k \rightarrow \infty} \frac{f\left(n^{k} x\right)}{n^{3 k}}, \quad \forall x \in X, r>0 \tag{5.11}
\end{equation*}
$$

Replacing ($x_{1}, x_{2}, \cdots, x_{n}$) by ($\delta_{i} x_{1}, \delta_{i} x_{2}, \cdots, \delta_{i} x_{n}$) in (5.2), we arrive

$$
\begin{align*}
& N\left(\frac{1}{\delta_{i}^{3 k}} D f\left(\delta_{i} x_{1}, \delta_{i} x_{2}, \cdots, \delta_{i} x_{n}\right), r\right) \tag{5.12}\\
& \quad \geq N^{\prime}\left(\alpha\left(\delta_{i} x_{1}, \delta_{i} x_{2}, \cdots, \delta_{i} x_{n}\right), \delta_{i}^{3 k} r\right)
\end{align*}
$$

for all $r>0$ and all $x_{1}, x_{2}, \cdots, x_{n} \in X$.
By proceeding the same procedure as in the Theorem 4.1, we can prove the function, $C: X \rightarrow Y$ satisfies the functional equation (1.6).

By fixed point alternative, since C is unique fixed point of T in the set

$$
\begin{align*}
& \Delta=\{f \in \Omega \mid d(f, C)<\infty\}, \\
& \quad \text { such that } N(f(x)-C(x), r) \geq N^{\prime}(K \beta(x), r) \tag{5.13}
\end{align*}
$$

for all $x \in X, r>0$ and $K>0$ Again using the fixed point alternative, we obtain $d(f, C) \leq \frac{1}{1-L} d(f, T f)$

$$
\begin{equation*}
\Rightarrow d(f, C) \leq \frac{L^{1-i}}{1-L} \Rightarrow N(f(x)-C(x), r) \geq N^{\prime}\left(\frac{L^{1-i}}{1-L} \beta(x), r\right) \tag{5.14}
\end{equation*}
$$

for all $x \in X$ and $r>0$. This completes the proof of the theorem.

From Theorem 5.2, we obtain the following corollary concerning the stability for the functional equation (1.6).
Corollary 5.3: Suppose that a function $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{align*}
& N\left(D f\left(x_{1}, x_{2}, \ldots, x_{n}\right), r\right) \\
& \quad \geq \begin{cases}N^{\prime}(\varepsilon, r), \\
N^{\prime}\left(\varepsilon \sum_{i=1}^{n}\left\|x_{i}\right\|^{s}, r\right), & s \neq 3 \\
N^{\prime}\left(\varepsilon \prod_{i=1}^{n}\left\|x_{i}\right\|^{s}, r\right), & s \neq \frac{3}{n} ; \\
N^{\prime}\left(\varepsilon\left(\prod_{i=1}^{n}\left\|x_{i}\right\|^{s}+\sum_{i=1}^{n}\left\|x_{i}\right\|^{n s}\right), r\right), & s \neq \frac{3}{n} ;\end{cases} \tag{5.15}
\end{align*}
$$

for all $x_{1}, x_{2}, \cdots, x_{n} \in X$ and $r>$, where ε, s are constants with $\varepsilon>0$. Then there exists a unique cubic mapping $C: X \rightarrow Y$ such that

$$
\begin{align*}
& N(f(x)-C(x), r) \\
& \quad \geq\left\{\begin{array}{l}
N^{\prime}\left(\varepsilon,(n-6)\left|n^{3}-1\right| r\right), \\
N^{\prime}\left(n \varepsilon\|x\|^{s},(n-6)\left|n^{3}-n^{s}\right| r\right) \\
N^{\prime}\left(\varepsilon\|x\|^{s},(n-6)\left|n^{3}-n^{n s}\right| r\right) \\
N^{\prime}\left(\varepsilon(n+1)\|x\|^{n s},(n-6)\left|n^{3}-n^{n s}\right| r\right)
\end{array}\right. \tag{5.16}
\end{align*}
$$

for all $x \in X$ and all $r>0$.

Proof: Setting

$$
\alpha\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left\{\begin{array}{l}
\varepsilon \\
\varepsilon \sum_{i=1}^{n}\left\|x_{i}\right\|^{s}, \\
\varepsilon \prod_{i=1}^{n}\left\|x_{i}\right\|^{s}, \\
\varepsilon\left(\prod_{i=1}^{n}\left\|x_{i}\right\|^{s}+\sum_{i=1}^{n}\left\|x_{i}\right\|^{n s}\right) .
\end{array}\right.
$$

for all $x_{1}, x_{2}, \cdots, x_{n} \in X$. Then,

$$
\begin{aligned}
& N^{\prime}\left(\alpha\left(\delta_{i}^{k} x_{1}, \delta_{i}^{k} x_{2}, \cdots, \delta_{i}^{k} x_{n}\right), \delta_{i}^{3 k} r\right) \\
& =\left\{\begin{array}{l}
N^{\prime}\left(\varepsilon, \delta_{i}^{3 k} r\right) \\
N^{\prime}\left(\varepsilon \sum_{i=1}^{n}\left\|x_{i}\right\|^{s}, \delta_{i}^{(3-s) k} r\right) \\
N^{\prime}\left(\varepsilon \prod_{i=1}^{n}\left\|x_{i}\right\|^{s}, \delta_{i}^{(3-n s) k} r\right)
\end{array}\right. \\
& N^{\prime}\left(\varepsilon\left(\prod_{i=1}^{n}\left\|x_{i}\right\|^{s}+\sum_{i=1}^{n}\left\|x_{i}\right\|^{n s}\right), \delta_{i}^{(3-n s) k} r\right) \\
& =\left\{\begin{array}{l}
\rightarrow 1 \text { as } k \rightarrow \infty, \\
\rightarrow 1 \text { as } k \rightarrow \infty, \\
\rightarrow 1 \text { as } k \rightarrow \infty, \\
\rightarrow 1 \text { as } k \rightarrow \infty .
\end{array}\right.
\end{aligned}
$$

Thus, (5.1) is holds. But we have

$$
\begin{aligned}
& \beta(x)=\frac{1}{n-6} \alpha\left(\frac{x}{n}, \frac{x}{n}, \cdots, \frac{x}{n}\right) \text { has the property } \\
& N^{\prime}\left(L \frac{1}{\delta_{i}^{3}} \beta\left(\delta_{i} x\right), r\right) \geq N^{\prime}(\beta(x), r) \quad \forall x \in X, r>0 .
\end{aligned}
$$

Hence

$$
\begin{aligned}
N^{\prime}(\beta(x), r) & =N^{\prime}\left(\alpha\left(\frac{x}{n}, \frac{x}{n}, \cdots, \frac{x}{n}\right),(n-6) r\right) \\
= & \left\{\begin{array}{l}
N^{\prime}(\varepsilon,(n-6) r), \\
N^{\prime}\left(\frac{n \varepsilon}{n^{s}}\|x\|^{s},(n-6) r\right) \\
N^{\prime}\left(\frac{\varepsilon}{n^{n s}}\|x\|^{s},(n-6) r\right) \\
N^{\prime}\left(\frac{(n+1) \varepsilon}{n^{n s}}\|x\|^{n s},(n-6) r\right)
\end{array}\right.
\end{aligned}
$$

Now,

$$
\begin{aligned}
N^{\prime}\left(\frac{1}{\delta_{i}^{3}} \beta\left(\delta_{i} x\right), r\right) & =\left\{\begin{array}{l}
N^{\prime}\left(\frac{\varepsilon}{\delta_{i}^{3}},(n-6) r\right), \\
N^{\prime}\left(\frac{\varepsilon}{\delta_{i}^{3}}\left(\frac{n}{n^{s}}\right)\left\|\delta_{i} x\right\|^{s},(n-6) r\right), \\
N^{\prime}\left(\frac{\varepsilon}{\delta_{i}^{3}}\left(\frac{1}{n^{n s}}\right)\left\|\delta_{i} x\right\|^{s},(n-6) r\right), \\
N^{\prime}\left(\frac{\varepsilon}{\delta_{i}^{3}}\left(\frac{n+1}{n^{n s}}\right)\left\|\delta_{i} x\right\|^{n s},(n-6) r\right)
\end{array}\right. \\
& =\left\{\begin{array}{l}
N^{\prime}\left(\delta_{i}^{-3} \beta(x), r\right), \\
N^{\prime}\left(\delta_{i}^{s-3} \beta(x), r\right), \\
N^{\prime}\left(\delta_{i}^{n s-3} \beta(x), r\right), \\
N^{\prime}\left(\delta_{i}^{n s-3} \beta(x), r\right) .
\end{array}\right.
\end{aligned}
$$

Now from (5.4), we prove the following cases for conditions (i) and (I).
Case: $1 L=n^{-1}$ if $i=0$

$$
\begin{aligned}
& N(f(x)-C(x), r) \geq N^{\prime}\left(\frac{n^{-3}}{1-n^{-3}} \beta(x), r\right) \\
& =N^{\prime}\left(\frac{\varepsilon}{(n-6)\left(n^{3}-1\right)}\|x\|^{s}, r\right)=N^{\prime}\left(\varepsilon\|x\|^{s},(n-6)\left(n^{3}-1\right) r\right)
\end{aligned}
$$

Case: $2 L=n^{3}$ if $i=0$

$$
\begin{aligned}
& N(f(x)-C(x), r) \geq N^{\prime}\left(\frac{1}{1-n^{3}} \beta(x), r\right) \\
& =N^{\prime}\left(\frac{\varepsilon}{(n-6)\left(1-n^{3}\right)}\|x\|^{s}, r\right)=N^{\prime}\left(\varepsilon\|x\|^{s},(n-6)\left(1-n^{3}\right) r\right) .
\end{aligned}
$$

Case: $3 L=n^{s-3}$ for $s>3$ if $i=0$

$$
\begin{aligned}
& N(f(x)-C(x), r) \geq N^{\prime}\left(\frac{n^{s-3}}{1-n^{s-3}} \beta(x), r\right) \\
& =N^{\prime}\left(n \varepsilon\|x\|^{s},(n-6)\left(n^{3}-n^{s}\right) r\right) .
\end{aligned}
$$

Case: $4 L=n^{3-s}$ for $s>3$ if $i=0$

$$
\begin{aligned}
& N(f(x)-C(x), r) \geq N^{\prime}\left(\frac{1}{1-n^{3-s}} \beta(x), r\right) \\
& =N^{\prime}\left(n \varepsilon\|x\|^{s},(n-6)\left(n^{s}-n^{3}\right) r\right) .
\end{aligned}
$$

Case: $5 L=n^{n s-3}$ for ${ }_{s>} \frac{3}{n}$ if $i=0$

$$
\begin{aligned}
& N(f(x)-C(x), r) \geq N^{\prime}\left(\frac{n^{n s-3}}{1-n^{n s-3}} \beta(x), r\right) \\
& =N^{\prime}\left(\varepsilon\|x\|^{s},(n-6)\left(n^{3}-n^{n s}\right) r\right) .
\end{aligned}
$$

Case: $6 L=n^{3-n s}$ for ${ }_{s<\frac{3}{n}}$ if $i=0$
$N(f(x)-C(x), r) \geq N^{\prime}\left(\frac{1}{1-n^{3-n s}} \beta(x), r\right)$
$=N^{\prime}\left(\varepsilon\|x\|^{s},(n-6)\left(n^{n s}-n^{3}\right) r\right)$.
Hence the proof is complete.
Preliminaries of Random Normed Spaces: In the sequel, we adopt the usual terminology, notations and conventions of the theory of random normed spaces as in [9, 38, 39].

Throughout this paper, Δ^{+}is the space of distribution functions, that is, the space of all mappings $F: R \cup\{-\infty, \infty\} \rightarrow[0,1]$, such that F is leftcontinuous and nondecreasing on $R, F(0)=0$ and $F(+\infty)=1 . D^{+}$is a subset of Δ^{+} consisting of all functions $F \in \Delta^{+}$for which $l^{-} F(+\infty)=1$, where $l^{-} f(x)$ denotes the left limit of the function f at the point x that is, $l^{-} f(x)=\lim f(t)$. The space Δ^{+}is partially ordered by the usual pointwise ordering of functions, that is, $F \leq G$ $t \rightarrow x^{-}$ if and only if $F(t) \leq G(t)$ for all $t \in \mathbb{R}$ The maximal element for Δ^{+}in this order is the distribution function ε_{0} given by
$\varepsilon_{0}(t)= \begin{cases}0, & \text { if } t \leq 0, \\ 1, & \text { if } t>0 .\end{cases}$

Definition 6.1: [38] A mapping $T:[0,1] \times[0,1] \rightarrow[0,1]$ is called a continuous triangular norm (briefly, a continuous t norm) if T satisfies the following conditions:

- $\quad T$ is commutative and associative;
- $\quad T$ is continuous;
- $\quad T(a, 1)=a$ for all $a \in[0,1]$;
- $T(a, b) \leq T(c, d)$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in[0,1]$

Typical examples of continuous $T_{P}(a, b)=a b, T_{M}(a, b)=\min (a, b)$ norms are $T_{L}(a, b)=\max (a+b-1,0)$ and $T_{L}(a, b)=\max (a+b-1,0)$ (the Lukasiewicz n-norm). Recall (see $[15,16]$) that if T is a t-norm and x_{n} is a given sequence of numbers in $[0,1]$ then $T_{i=1}^{n} x_{n+i}$ is defined recurrently by
$T_{i=1}^{1} x_{i}=x_{1}$ and $T_{i=1}^{n} x_{i}=T\left(T_{i=1}^{n-1} x_{i}, x_{n}\right)$ for $n \geq 2 . T_{i=n}^{\infty} x_{i}$ is defined as $T_{i=1}^{\infty} x_{n+i}$. It is known [16] that, for the Lukasiewicz t-norm, the following implication holds:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(T_{L}\right)_{i=1}^{\infty} x_{n+i}=1 \Leftrightarrow \sum_{n=1}^{\infty}\left(1-x_{n}\right)<\infty \tag{6.2}
\end{equation*}
$$

Definition 6.2: [39] A random normed space (briefly, $R N$-space) is a triple (X, μ, T), where X is a vector space, T is a continuous t-norm and μ is a mapping from X into D^{+}satisfying the following conditions:

- $\quad \mu_{x}(t)=\varepsilon_{0}(t)$ for all $r>0$ if and only if $x=0$;
- $\quad \mu_{\alpha x}(t)=\mu_{x}(t| | \alpha \mid)$ for all $x \in X$ and $\alpha \in \mathbb{R}$ with $\alpha \neq 0$;
- $\quad \mu_{x+y}(t+s) \geq T\left(\mu_{x}(t), \mu_{y}(s)\right)$ for all $x, y \in X$ and $t, s \geq 0$.

Example 6.3: Every normed spaces $(X,\|\cdot\|)$ defines a random normed space $\left(X, \mu, T_{M}\right)$, where
$\mu_{x}(t)=\frac{t}{t+\|x\|}$
and T_{M} is the minimum t-norm. This space is called the induced random normed space.

Definition 6.4: Let (X, μ, T) be a $R N$-space.

- A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to a point $x \in X$ if, for any $\varepsilon>0$ and $\lambda>0$, there exists a positive integer N such that $\mu_{x_{n}-x}(\varepsilon)>1-\lambda$ for all $n \geq N$.
- A sequence $\left\{x_{n}\right\}$ in X is called a Cauchy sequence if, for any $\varepsilon>0$ and $\lambda>0$, there exists a positive integer N such that $\mu_{x_{n}-x_{m}}(\varepsilon)>1-\lambda$ for all $n \geq m \geq N$.
- A RN-space (X, μ, T) is said to be complete if every Cauchy sequence in X is convergent to a point in X.

Theorem 6.5: If (X, μ, T) is a RN-space and $\left\{x_{n}\right\}$ is a sequence in X such that $x_{n} \rightarrow x$, then $\lim _{n \rightarrow \infty} \mu_{x_{n}}(t)=\mu_{x}(t)$ almost everywhere.

Random Stability Results: Direct Method: In this section, the generalized Ulam - Hyers stability of the Cubic functional equation (1.6) in RN-space is provided. Throughout this section, let us consider X be a linear space and (X, μ, T) is a complete RN-space. The proof of the following Theorem and Corollary is similar to that of results of the Section 4 and 5. Hence the details of the proof are omitted.

Theorem 7.1: Let $j= \pm 1$. Let $f: X \rightarrow Y$ be a mapping for which there exist a function $\eta: X^{n} \rightarrow D^{+}$with the condition

$$
\begin{align*}
& \lim _{k \rightarrow \infty} T_{i=0}^{\infty}\left(\eta_{n^{(k+i) j_{x_{1}, n}(k+i) j_{x_{2}}, \cdots, n}}(k+i) j_{x_{n}}\left(n^{3(k+i+1) j} t\right)\right)=1 \\
& =\lim _{k \rightarrow \infty} \eta_{n^{k j}} j_{x_{1}, n^{k j}}^{x_{2}, \cdots, n^{k j} x_{n}}\left(n^{3 k j} t\right) \tag{7.1}
\end{align*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and all $t>0$. such that the functional inequality with $f(0)=0$ such that

$$
\begin{equation*}
\mu_{D f\left(x_{1}, x_{2}, \cdots, x_{n}\right)}(t) \geq \eta_{x_{1}, x_{2}, \cdots, x_{n}}(t) \tag{7.2}
\end{equation*}
$$

for all $x_{1}, x_{2}, \ldots, x_{n} \in X$ and all $t>0$. Then there exists a unique cubic mapping $C: X \rightarrow Y$ satisfying the functional equation (1.6) and
$\mu_{C(x)-f(x)}(t) \geq T_{i=0}^{\infty}\left(\eta_{n^{(i+1) j_{x, n}}}{ }^{(i+1) j_{x, \cdots, n}}{ }^{(i+1) j_{x}}\left(n^{3(i+1) j} t\right)\right)$
for all $x \epsilon X$ and all $t>0$. The mapping $C(x)$ is defined by
$\mu_{C(x)}(t)=\lim _{k \rightarrow \infty} \mu_{{\frac{f\left(n^{k j} x\right)}{3 k j}}_{n^{3 k j}}}(t)$
for all $x \in X$ and all $t>0$.
Proof: Assume $j=1$. Setting $\left(x_{1}, x_{2}, \cdots, x_{n}\right)=(x, x, \cdots, x)$ in (7.1), we get

$$
\begin{equation*}
\mu_{(n-6) f(n x)-(n-6) n^{3} f(x)}(t) \geq \eta_{x, x, \ldots, x}(t) \tag{7.5}
\end{equation*}
$$

for all $x \epsilon X$ and all $t>0$. It follows from (7.5) and ($R N 2$), we have

$$
\begin{equation*}
\mu_{\frac{f(n x)}{n^{3}}-f(x)}(t) \geq \eta_{x, x, \ldots, x}\left((n-6) n^{3} t\right) \tag{7.6}
\end{equation*}
$$

for all $x \in X$ and all $t>0$. Replacing x by $n^{k} x$ in (7.6), we arrive
$\mu_{\frac{f\left(n^{k+1} x\right)}{n^{3(k+1)}}-\frac{f\left(n^{k} x\right)}{n^{3 k}}}(t) \geq \eta_{n^{k} x, n^{k} x, \ldots, n^{k} x}\left((n-6) n^{3(k+1)} t\right)$
for all $x \in X$ and all $t>0$. The rest of the proof is similar to that of Theorem 4.1.
The following Corollary is an immediate consequence of Theorem 7.1, concerning the stability of (1.6).
Corollary 7.2: Let ε and s be nonnegative real numbers. Let a cubic function $f: X \rightarrow Y$ satisfies the inequality

for all $x_{1}, x_{2}, \cdots, x_{n} \in X$ and all $t>0$. Then there exists a unique cubic function $C: X \rightarrow Y$ such that

for all $x \in X$ and all $t>0$.
Random Stability Results: Fixed Point Method: In this section, the authors present the generalized Ulam - Hyers stability of the functional equation (1.6) in Random normed space using fixed point method.

Theorem 8.1: Let $f: X \rightarrow Y$ be a mapping for which there exist a function $\eta: X^{n} \rightarrow D^{+}$with the condition
$\lim _{k \rightarrow \infty} \eta_{i}^{k} x_{1}, \delta_{i}^{k} x_{2}, \cdots, \delta_{i}^{k} x_{n}\left(\delta_{i}^{3 k} t\right)=1, \forall x_{1}, x_{2}, \cdots, x_{n} \in X, t>0$
and satisfying the functional inequality
$\mu_{D f\left(x_{1}, x_{2}, \cdots, x_{n}\right)}(t) \geq \eta_{x_{1}, x_{2}, \cdots, x_{n}}(t), \forall x_{1}, x_{2}, \cdots, x_{n} \in X, t>0$.

If there exists $L=L(i)$ such that the function
$x \rightarrow \beta(x, t)=\eta_{\frac{x}{n}, \frac{x}{n}, \ldots, \frac{x}{n}}((n-6) t)$,
has the property
$\beta(x, t) \leq L \frac{1}{\delta_{i}^{3}} \beta\left(\delta_{i} x, t\right), \forall x \in X, t>0$.
Then there exists a unique cubic function $C: X \rightarrow Y$ satisfying the functional equation (1.6) and
$\mu_{C(x)-f(x)}\left(\frac{L^{1-i}}{1-L} t\right) \geq \beta(x, t), \forall x \in X, t>0$.

Proof: Let d be a general metric on Ω such that
$d(g, h)=\inf \left\{\begin{array}{l}K \in(0, \infty) \mid \mu_{g(x)-h(x)}(K t) \\ \geq \beta(x, t), x \in X, t>0\end{array}\right\}$.

It is easy to see that (Ωd) is complete. Define $T: \Omega \rightarrow \Omega$ by ${ }_{T g(x)=} \frac{1}{\delta_{i}^{3}} g\left(\delta_{i} x\right)$, for all $x \in X$ Now for $g, h \in \Omega$, we have $d(g, h) \leq k$

$$
\begin{align*}
d(g, h) \leq K & \Rightarrow \mu_{g(x)-h(x)}(K t) \geq \beta(x, t) \\
& \Rightarrow \mu_{T g(x)-\operatorname{Th}(x)}\left(\frac{K t}{\delta_{i}^{3}}\right) \geq \beta(x, t) \\
& \Rightarrow d(\operatorname{Tg}(x), \operatorname{Th}(x)) \leq K L \tag{8.5}\\
& \Rightarrow d(T g, T h) \leq L d(g, h)
\end{align*}
$$

for all $g, h \in \Omega$ Therefore T is strictly contractive mapping on Ω with Lipschitz constant L The rest of the proof is similar to that of Theorem 5.2.

From Theorem 8.1, we obtain the following corollary concerning the stability for the functional equation (1.6).
Corollary 8.2: Suppose that a function $f: X \rightarrow Y$ satisfies the inequality
$\mu_{D f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}(t) \geq \begin{cases}\eta_{\varepsilon}(t), & s \neq 3 ; \\ \eta \sum_{i=1}^{n} \quad(t), & s \neq \frac{3}{n} ; \\ \eta_{i} \|^{s} \\ \varepsilon \prod_{i=1}^{n}\left\|x_{i}\right\|^{s}(t), & \\ \left.\eta_{\left(\prod_{i=1}^{n}\left\|x_{i}\right\|^{s}+\sum_{i=1}^{n}\left\|x_{i}\right\|^{n s}\right.}^{\varepsilon}\right)^{(t),} & s \neq \frac{3}{n} ;\end{cases}$
for all $x_{1}, x_{2}, \cdots, x_{n} \in X$ and $t>0$, where $\boldsymbol{\varepsilon}$, s are constants with $\boldsymbol{\varepsilon}>0$. Then there exists a unique cubic mapping $C: X \rightarrow Y$ such that
$\mu_{f(x)-C(x)}(t) \geq\left\{\begin{array}{l}\frac{\eta}{(n-6)\left|n^{3}-1\right|}(t), \\ \eta \frac{n \varepsilon}{(n-6)\left|n^{3}-n^{s}\right|}\|x\|^{s} \\ \eta \frac{\varepsilon}{(n-6)\left|n^{3}-n^{n s}\right|}\|x\|^{n s}(t), \\ \eta \frac{(n+1) \varepsilon}{(n-6)\left|n^{3}-n^{n s}\right|}\|x\|^{n s}\end{array}\right.$
for all $x \in X$ and all $t>0$.

Proof: Setting
$\mu_{f(x)-C(x)}(t) \geq\left\{\begin{array}{l}\frac{\eta}{(n-6)\left|n^{3}-1\right|}(t), \\ \eta \frac{n \varepsilon}{(n-6)\left|n^{3}-n^{s}\right|}\|x\|^{s} \\ \eta \frac{\varepsilon}{(n-6)\left|n^{3}-n^{n s}\right|}\|x\|^{n s} \\ \eta \frac{(n+1) \varepsilon}{(n-6)\left|n^{3}-n^{n s}\right|^{n s}}\|x\|^{n s}\end{array}(t)\right.$,
for all $x_{1}, x_{2}, \cdots, x_{n} \in X$ and all $t>0$. The rest of the proof is similar to that of Corollary 5.3.

REFERENCES

1. Ulam, S.M., 1964. Problems in Modern Mathematics, Science Editions, Wiley, NewYork.
2. Hyers, D.H., 1941. O n the stability of the linear functional equation, Proc. Nat. Acad. Sci., U.S.A., 27: 222-224.
3. Aoki, T., 1950. On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2: 64-66.
4. Th, M., 1978 . Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72: 297-300.
5. Gavruta, P., 1994. A generalization of the Hyers-Ulam- Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184: 431-436.
6. Rassias, J.M., 1982. On approximately of approximatelylinear mappings by linear mappings, J. Funct. Anal. USA, 46: 126-130.
7. Ravi, K., M. Arunkumar and J.M. Rassias, 2008. On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn, 3(08): 36-47.
8. Rassias, J.M., 2001. Solution of the Ulam stability problem for the cubic mapping, Glasnik Mathematica, 36(56): 63-72.
