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Abstract: This paper addresses the issue of balancing the acoustic hole and sparsing the speech signal
enrollment for training and testing in Automatic Speaker Recognition (ASR) system. Sparsing techniques
involve  the  representation  of  a  small  number  of  coefficients  that  hold a large amount of the energy.
Sparsity can play a major role in resolving the issue of dealing with big data in ASR by applying speech
compression techniques and information storage in databases. Spectral domain compression of the speech
signal using novel sparsing algorithms that balance the sparsity of speech signal with the acoustic hole is
proposed. The speech signal is converted to a spectral domain using the Discrete Rajan Transform (DRT) and
only first and mid-spectrum component in each block of size 8x1 retained forcing the remaining component to
zero. The speech signal spectrum can be maximally compressed at 8:1 ratio to the unique one with balancing
acoustic hole and synthesized speech signal, which can be used in ASR systems. A balanced spectrally
compressed speech signal can be stored in database as a speaker representative and during training and testing
time it can be synthesized using the Inverse Discrete Rajan Transform (IDRT). Simulation results, shows
acceptable speech signal spectral compression that balances sparsity and the generation of the acoustic hole
is 75% with 94.8% efficiency without sparsification and 99.1% efficiency with TIMIT database respectively.

Key words: Discrete  Rajan  Transform    Inverse   Discrete   Rajan Transform    Compressive  sensing
 Cumulative Point Index  Error Dynamic Range  Gaussian mixture model  Universal
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INTRODUCTION degraded performance. Based on the type of the data in

The sparse speech data training and testing in ASR speaker recognition evaluations, the researchers in
result from a big challenge because of an absence of speaker recognition field have successfully developed
acoustic phonemes scope in the speaker space compared techniques to deal with session/channel variability [2].
with more conversational speech data. In this way, it is Although the state-of-the-art algorithms sensitivity
profoundly likely that phoneme bungle exists between the to unseen channel or session variability is partially
restricted prepared acoustic space and info test grouping. mitigated, they are highly vulnerable to additive noise and
We called this marvel "acoustic holes" in the acoustic reverberant environment [3]. It has also been shown that
model space. Speaker recognition robustness in adverse even the performance of the state-of-the-art speaker
condition has been investigated widely in recent years [1]. recognition systems degrades substantially when limited
There are quite a number of factors affecting the speech is available in testing phase [4]. Although there
automatic speaker recognition performance including are recent studies to handle reverberation and additive
channel/session variability and noise/reverberation. In noise in feature and model domain for speaker recognition
real-world applications dealing with the mismatched systems, the compensation techniques with respect to
condition is inevitable and any type of mismatch between noise and reverberation for speaker recognition systems
training and test session will potentially result in are still an open question.

national institute of standards and technology (NIST)
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Since our civilization, the speech is pure and natural is a homomorphism nature if for all g , g  in G, (g , g )  =
means of human communication. Let us take an example (g )  (g )  and it is transformation invariant in speech
for speaker recognition, a human recognizes a speaker signal. Due to homomorphism nature, it has many
regardless of the text spoken without of any effort for applications in image processing like detection of the
him/her to understand what exactly text spoken by curve, detection of lines, detection of contour and
different speakers. Human speech signal carries linguistic detection of edge and image point isolation. If signal
information as a major component as well as non-verbal sequences are highly correlated then error in
information  as   a minor component. Based on speaker- reconstructed signal is less and vice versa with the
specific features of acoustic speech signal a listener can application  of  DRT.  Due  to  the    highly  correlated
identify his/her gender of the speaker, approximate age non-stationary nature of the speech signal, the DRT plays
and emotional state. In the human being, there is the a very important task in terms of spectral sparsification,
effective way to automatically extract speaker-specific compression  and  original speech signal reconstruction.
information from speech signals; the same concept has to A U dimensional speech signal vector ‘‘d’’ can be
be  used  in automatic speaker recognition by machine. represented as U = 2  with u being a nonnegative integer.
The interference of redundancy in speech signal Consider a speech signal d(u), apply DRT on signal then
components hampers a speech signal or speaker spectrum D(r) can be obtained after u steps. The time
recognition system performance [5]. domain speech signal can be converted into the spectral

The speech signal characteristically generated vocal domain with a unique operating matrix of dimension
tract which is a resonant system otherwise by physical  denoted as Y . This unique operation matrix
impacts or occasionally together. Speech signal generated
by vocal tract as resonant systems contain the number of
redundant frequency components, therefore, if the speech
signal which is going to be used in ASR is transformed in
the spectral domain, a comparatively high degree of
sparsity can be obtained. Taking into consideration that
speech signal generated by physical impacts then it can
be experimentally observed that the largest part of the
speech signal is concentrated on time. This observation
of speech characteristics permits superior sparse
demonstration of the speech signal in time domain. In
such kind of situation of the speech signal, Wavlets
transform is most suitable for sparsification of the speech
signal. Hence, the perception of sparse representation and
sparsity in speech processing and ASR is very effective
[6].

The  compressive  sensing   (CS)   concept in
sparsing can be utilized in a number of applications,
particularly in speech signal processing that is speech
pre-conditioning, Signal to Noise Ration (SNR)
improvement and speech coding [7]. Though sparsing is
the latest technology, very little research has been done
on the application of sparsing on speech signal and its
utilization in ASR. In these manner, significant difficulties
to apply sparsification in speech signal processing to
balance the acoustic hole begins with, finding a good
sparse basic and development most efficient measurement
matrices [8].

Sparse Representation with Discrete Rajan Transform
(DRT) and Inverse Discrete Rajan Transform (IDRT):
Rajan Transform (RT) demonstrates a function : G H
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r

construction is defined as;

(1)

I Indicates the with order identity matrix. For example at r
steps the order of identity matrix is  and

e  is the “supplementary information” which indicates ther
1

equilibrium state condition of the signal during spectrum
generation.

There will be a certain inherent phasor relation with
‘supplementary information’ e  between the sample pointsr

1  and 5 .st th

(2)

where I = {1,2,...,2 }. At every step r, let F  denoted asr–1
r

output sequence and it is obtained as:

(3)

In eqn. (3) at every steps F  has got 2 p  elementsr r
r

When r = 1, D  = d, at every steps the equilibrium1

segments are considered for r > 1, 2 .r–1

Y  Is the operator matrix can be constructed at a stager

r using supplementary information e ? Additionally if r >r

1 then the output can be restructure in equilibrium
segments and it can be defined as:
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(4) During the IDRT computation the original input

where  and

(5) Application on Speech Signal: The experiments are

Also, NIST database. Speech signal of male and female taken for

experiment is conducted on MATLAB with i3 Intel Core

(6) Fig. 1. shows the block diagram representation of

D express that signal spectrum into equilibrium process begins when a speaker formulates a message inR+1

segments. Steps will be continuing till the final DRT his/her mind to transmit to the listener via speech
spectrum is obtained after u steps. As explained already, communication. The next steps in the process are the
DRT is a homomorphic function and it also exhibits the conversion of the message into language code. This
isomorphism property when the complementary phasor corresponds to converting the message into a set of
information is preserved. Since DRT is also viewed as an phoneme sequences corresponding to the sounds that
isomorphic function, one should be able to retrieve the make up the words, along with prosody (syntax) markers
original signal data from its DRT spectrum by means of its denoting duration of the sounds, loudness of sounds and
inverse transform. Indeed, the IDRT is used to retrieve the pitch associated with the sounds. The acoustic speech is
input data with the help of e  and µ . Now the DRT produced at 64kbit/s but in order to understand thek k

1

operator R  is obtained using the values of e  and µ . The information we need only 50bit/s. Once speech signal isk k k
1

general expression used to retrieve intermediate signal produced the recognition parts start at 64kbit/s
data at every stage is [9]: continuous signal then spectrum analyzer and feature

(7) a lot of redundancy. Once the feature extracted we need

where t = {r, r – 1, ... 1}. In order to understand the information, only 50bit/s

As on account of forward DRT calculation wherein from acoustic wave form we need 50 bit/sec information.
the succession is part into balance portions, on account But the acoustic wave form generated from vocal tract
of IDRT calculation, the sections are recombined and data system used to be 30-64 kbit/s. DRT is a very powerful
arrangement recovered iteratively. tool to remove redundancy from acoustic waveform.

When a = r, F  = F  then we can obtained final stage The DRT algorithms based sparsification,t r

spectral domain signal and for t > r, compression, decompression steps are as given below:

(8) Read wave files.

Convert speech data into 8X6016 sizes blocks.

(9) discard remaining components.

speech signal can be obtained.

DRT Sparsification, Compression and Decompression

performed on a speech signal is taken from TIMIT and

3 sec with the sampling frequency 16 KHz. This

Processor Clock Frequency at 2.53 GHz. The entire speech
signal is divided into a number of blocks. Every block
contains 8 samples. Here, DRT will be applied to speech
signal, it will be Sparsified, compressed, stored and
whenever the speech signal required IDRT will be applied
to reconstruct the original speech signal.

speech production process [10]. The speech production

extraction came to 2kbit/s by doing this we have removed

to do the language translation which is discrete in nature.

information is required. To understand the information

Select beginning 48128X1 sizes of speech data.

Apply DRT on all 6016 blocks.
Keep Cumulative Point Index (CPI) and mid
frequency component (the 5th component of each
block) and force all other components to zero.
Preserve CPI and mid frequency component and
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Fig. 1: The Speech production chain

Table 1: Real time speech signal in discrete sequence d(u) of length 64
S1 S2 S3 S4 S5 S6 S7 S8

B1 -0.01379 0.00461 0.02484 0.03485 0.03903 0.04227 0.04269 0.04135
B2 0.03622 0.02921 0.02109 0.01840 0.02112 0.02051 0.01794 0.00565
B3 -0.01263 -0.02914 -0.03036 -0.02661 -0.02188 -0.01910 -0.01825 -0.02017
B4 -0.01913 -0.01575 -0.01544 -0.01343 -0.00946 -0.00201 0.00699 0.01447
B5 0.01547 0.01031 0.00449 0.00131 0.00049 0.00177 0.00504 0.00406
B6 -0.00180 -0.00815 -0.01065 -0.01447 -0.02026 -0.02347 -0.02332 -0.02151
B7 -0.02188 -0.02130 -0.02695 -0.03314 -0.04178 -0.04562 -0.04996 -0.05539
B8 -0.06128 -0.05380 -0.03781 -0.01907 0.01581 0.11163 0.19968 0.16220

Table 2: D(r) The spectrum of d(u)
S1 S2 S3 S4 S5 S6 S7 S8

B1 0.21585 0.03030 0.07162 -0.01297 0.11484 -0.02652 -0.06613 0.00381
B2 0.17014 -0.02261 -0.04398 -0.00735 -0.03970 -0.00320 0.00790 -0.01602
B3 -0.17816 -0.01190 -0.01263 0.01556 0.01935 0.01361 0.01776 -0.02496
B4 -0.05377 0.02032 0.03894 -0.00134 0.07373 0.00952 0.02692 0.00140
B5 0.04294 -0.00803 -0.01315 -0.00027 -0.02023 0.00864 0.02682 -0.00424
B6 -0.12363 -0.01157 -0.01627 0.00754 -0.05350 0.00876 0.01407 0.00247
B7 -0.29602 -0.01489 -0.03485 -0.00836 -0.08948 -0.00366 -0.00104 0.00519
B8 0.31735 0.08456 0.29263 -0.12204 0.66129 0.03214 0.17624 -0.14456

Store CPI and mid frequency components as a Application of DRT on Speech Signal of 64 Sample Size:
representative of speaker for ASR application. A 3 sec speech signal of the male from TIMIT database
Stored CPI and mid frequency components sequence has 62634 samples. Before applying DRT we need to take
are the sparsified spectral sequence sample size which is divisible by 8. Let us take a sample of
Apply IDRT to reconstruct the time domain speech 48128 and divide it into 8X1 blocks. Now we have total
signal for ASR application 6016 number of blocks of size 8X1 and DRT applied on
Compute  Mean  Square  Error,  Signal  to Noise every block. A real- time speech signal d(u) of sample size
Ration   and    PESQ    for     the   reconstructed 64 was taken and DRT is applied in the block wise
speech signal with reference to an original speech fashion, the corresponding spectrum of the blocks is
signal. obtained as D(r).

The DRT algorithms have been compared with similar speech signal in the discrete sequence d(u) of length 64
algorithms like DCT, DFT and DWT in the following shown in Table 1. Let each block represented by B and
section. Sample S respectively.

For instance, let us consider a specimen real-time
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Fig. 2: Plot of 64 points original speech signal d(u)

Fig. 3: Plot of D(r) the spectrum of d(u)

DRT is applied to d(u) in block-wise fashion and D  (r) after ignoring all 56 samples of spectral
equivalent spectral blocks obtained as D(r) is shown in components of zero values? Table 4. Represents the
Table 2. compressed spectrum speech signal of size 8X1 instead of

D(r) are the spectral component of the original 64X1.
speech signal d(u) and the 1  component of each block The compressed speech signal D’  can be stored inst

having  high   magnitude   compared   to  remaining? a database as a representative biometric vector of a
These  components  are  also  called   CPI   and  carrying speaker. The scale of compression and hence sparsity
all  speech  intelligence.  The first component of each acquired by keeping the first component of the spectral is
block can be retained and remaining components can be 12.5%.
simply discarded. Fig. 2. Shows the plot 64 points of the Fig. 4. Shows the plot of D (r) the sparsed spectral
original speech signal d(u) and Fig. 3. Shows the plot of sequence and Fig. 5 shows the compressed form of
D(r). sparsed spectral sequence D’  (r).

Sparsing of Speech Data by Retaining CPI Alone: D(r) Is Sparsing of Speech Data by Retaining Cpi and mid
the spectral domain signal and can be sparsed by keeping Frequencies Alone: In this case D(r) the spectrum of
the CPI alone in each block of length 8 and compelling original speech signal is sparsed by keeping the CPI and
remaining components to 0. the mid frequency segment in each block of length 8 and

At  that  point,  the sparse spectrum can be driving remaining components to 0. Mid frequency
represented by D  (r) and shown in Table 3. component = [(total number of samples in a block/2) +1]s1

Compressing Speech Data with CPI Alone: D  (r) Is the frequency component and it will be retained along withs1

spectral  domain  sparsed  speech  data  having only 8 CPI. At that point, the sparse speech data sequence is D
non-zero elements. D’  (r) Is the compressed version of (r)  represented in Table 5.s1

s1

s1

s1

s1

= [(8/2) +1] =5  sample of each block will be treated as midth

s2
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Fig. 4: Plot of D (r) sequences1

Fig. 5: Plot of D' (r) sequences1

Table 3: The sparsed spectrum D (r)s1

S1 S2 S3 S4 S5 S6 S7 S8
B1 0.21585 0 0 0 0 0 0 0
B2 0.17014 0 0 0 0 0 0 0
B3 -0.17816 0 0 0 0 0 0 0
B4 -0.05377 0 0 0 0 0 0 0
B5 0.04294 0 0 0 0 0 0 0
B6 -0.12363 0 0 0 0 0 0 0
B7 -0.29602 0 0 0 0 0 0 0
B8 0.31735 0 0 0 0 0 0 0

Table 4: Compressed spectrum D' (r)s1

S1 S2 S3 S4 S5 S6 S7 S8
B1 0.21585 0.17014 -0.17816 -0.05377 0.04294 -0.12363 -0.29602 0.31735

Table 5: The sparsed spectrum D (r)s2

S1 S2 S3 S4 S5 S6 S7 S8
B1 0.21585 0 0 0 0.11484 0 0 0
B2 0.17014 0 0 0 -0.03970 0 0 0
B3 -0.17816 0 0 0 0.01935 0 0 0
B4 -0.05377 0 0 0 0.07373 0 0 0
B5 0.04294 0 0 0 -0.02023 0 0 0
B6 -0.12363 0 0 0 -0.05350 0 0 0
B7 -0.29602 0 0 0 -0.08948 0 0 0
B8 0.31735 0 0 0 0.66129 0 0 0
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Table 6: Compressed spectrum D' (r)s2

S1 S2 S3 S4 S5 S6 S7 S8
B1 0.21585 0.11484 0.17014 -0.03970 -0.17816 0.01935 -0.05377 0.07373
B2 0.04294 -0.02023 -0.12363 -0.05350 -0.29602 -0.08948 0.31735 0.66129

Fig. 6: Plot CPI and mid frequency components D (r)s2

Fig. 7: Plot compressed CPI and mid frequency components D' (r)s2

Compressing Speech Data with CPI and mid Frequency Presently, IDRT algorithm applied to D  (r) and D  (r) to
Alone: D (r) Is the spectral domain sparsed speech data reconstruct the speech signal which can be used durings2

having only 16 non-zero elements. D’  (r) Is the testing and training phase of ASR. Here we can renames2

compressed version of D (r) after ignoring all 48 samples the reconstructed speech signal as d’  (u) and d’  (u)s2

of spectral components of zero values? The D’  (r) is respectively. Table 7 Represents the time domains2

presented in Table 6. reconstructed speech signal d’  (u) from D’ .
D’ (r) Can be stored in a database as a Table 8 Represents the time domain reconstructeds2

representative biometric vector of a speaker of size 16X1 speech signal d’  (u) from D’  (r)
instead of 64X1. The scale of compression and hence Fig. 8 shows original 64 samples speech signal d(u)
sparsity acquired by keeping the first and mid frequency and IDRT reconstructed speech signal d’  (u) represented
component of the spectral is 25%. in the same plot. Fig. 9 shows original 64 samples speech

Fig. 6 shows the plot of D  (r) the sparsed spectral signal d(u) and IDRT reconstructed speech signal d’ (u)s2

sequence  with  CPI and mid frequency component and represented in the same plot.
Fig. 7. Compressed form of sparsed spectral sequence D’ Fig. 10 Shows original speech signal d(u) and IDRTs2

(r). reconstructed  speech  signal  d’ (u)  exhibited  in  the

Decompressing the Speech Signal from D’ (r) and D’ (r) D(r)  is  sparsed  by  holding  CPI   values  alones1 s2

with IDRT: Amid the speaker recognition testing stage,
D’  (r) and D’  (r) is uncompressed to acquire D  (r), Ds1 s2 s1 s2

(r) in case of 12.5% and 25% of sparsity respectively.

s1 s2

1 2

1 s1

2 s2

1

2

1

same plot of 48128 sample size of speech data. Likewise,

recurrence parts of all the 6016 blocks. Because of this
sparsing,  12032  unearthly values  would involve 12.5%
of  the  real  memory dispensed  to oblige 48128 examples.
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Table 7: Reconstructed speech signal d' (u) from D' (r)1 s1

S1 S2 S3 S4 S5 S6 S7 S8

B1 0.02698 0.02698 0.02698 0.02698 0.02698 0.02698 0.02698 0.02698
B2 0.02127 0.02127 0.02127 0.02127 0.02127 0.02127 0.02127 0.02127
B3 -0.02227 -0.02227 -0.02227 -0.02227 -0.02227 -0.02227 -0.02227 -0.02227
B4 -0.00672 -0.00672 -0.00672 -0.00672 -0.00672 -0.00672 -0.00672 -0.00672
B5 0.00537 0.00537 0.00537 0.00537 0.00537 0.00537 0.00537 0.00537
B6 -0.01545 -0.01545 -0.01545 -0.01545 -0.01545 -0.01545 -0.01545 -0.01545
B7 -0.03700 -0.03700 -0.03700 -0.03700 -0.03700 -0.03700 -0.03700 -0.03700
B8 0.03967 0.03967 0.03967 0.03967 0.03967 0.03967 0.03967 0.03967

Table 8: Reconstructed speech signal d' (u) from D' (r)2 s2

S1 S2 S3 S4 S5 S6 S7 S8

B1 0.01263 0.01263 0.01263 0.01263 0.04134 0.04134 0.04134 0.04134
B2 0.02623 0.02623 0.02623 0.02623 0.01630 0.01630 0.01630 0.01630
B3 -0.02469 -0.02469 -0.02469 -0.02469 -0.01985 -0.01985 -0.01985 -0.01985
B4 -0.01594 -0.01594 -0.01594 -0.01594 0.00249 0.00249 0.00249 0.00249
B5 0.00790 0.00790 0.00790 0.00790 0.00284 0.00284 0.00284 0.00284
B6 -0.00877 -0.00877 -0.00877 -0.00877 -0.02214 -0.02214 -0.02214 -0.02214
B7 -0.02582 -0.02582 -0.02582 -0.02582 -0.04819 -0.04819 -0.04819 -0.04819
B8 -0.04299 -0.04299 -0.04299 -0.04299 0.12233 0.12233 0.12233 0.12233

Fig. 8: Plot of 64 points original speech signal d(u) and 64 points reconstructed speech signal d' (u)1

Fig. 9: Plot of d(u) and d' (u)2
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Fig. 10: Original speech signal d(u) and IDRT reconstructed speech signal d' (u)1

Fig. 11: Original speech signal d(u) and IDRT reconstructed speech signal d' (u)2

Fig. 11. Indicates original speech signal d(u) and IDRT using IDRT algorithm from 12.5% and 25% compression
reconstructed speech signal d’ (u) the discourse signal of a speech waveform from TIMIT database, to2

reproduced  from  25%  of  speech data. Reconstructed demonstrate the appearance of acoustic hole and
speech signal d’ (u) of a 48128 samples size of the speech similarity of other speaker specific information. The2

signal of a speaker from the scarified information keeping transitions of formants are much clearer in both
the CPI and the mid frequency from each of block of reconstructed speech signal. The appearance of
length 8 and constraining different components to 0, that phonemes is compared with original speech signal and
is D’  (r), is particularly closer to the original speech reconstructed speech signal. In Fig. 12. the top one iss2

signal d(u). original spectrogram and bottom is CPI alone
Error Dynamic Range (EDR) because of remaking reconstructed speech signal spectrogram. It has been

from  25%  of  voice  information   is   less  when observed that the phonemes in reconstructed speech
contrasted  with  the  EDR   because   of  reproduction signal have been burst and a lot of acoustic holes are
from 12.5% of voice information and henceforth the generated.  It  indicates that the up to 12.5% of sparsed
previous is superior to the last in speaker recognition and compressed speech signal may not be suitable for
application. ASR application. The part wise comparisons of

Demonstration of Speaker Specific Information and windows. In extreme right side white window there is no
Acoustic Hole in IDRT Reconstructed Speech Signal: similarity of spectrogram with the original and
Sparse and compressed speech signal was reconstructed reconstructed signal.

spectrogram have been shown in different colors of
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Fig. 12: Spectrogram of original and CPI alone reconstructed speech signal

Fig. 13: Spectrogram of original and CPI+ mid frequency reconstructed speech signal

In Fig. 13. the top one is original spectrogram and have measured the performance of d’ (u) and d’ (u) with
bottom is CPI+mid frequency alone reconstructed speech reference to original speech signal d(u).
signal spectrogram. It has been observed that the The Mean Squared Error (MSE) is apparently the
phonemes in original and reconstructed speech signal are essential paradigm used to assess the quality of the
almost similar. Comparatively, the acoustic hole is less reconstructed signal. The 48128 samples of original of
with CPI alone reconstructed signal. It indicates that the speech signal and IDRT synthesized speech signal with
up to 25% sparsed and compressed speech signal will be “u” range time index covering the measurement intervals,
suitable for ASR application. The part wise comparisons then the MSE is defined as: 
of spectrogram have been shown in different colors of
windows. In the extreme right side white window there is (10)
almost similar spectrogram with the original and
reconstructed signal. In digital speech processing MSE represents the

CPI along with mid frequency component is quantity by which IDRT reconstructed speech signal
balancing  the  acoustic  hole   in   reconstructed  signal. fluctuates from the original speech.
In Fig. 12 it has been demonstrated that if mid frequency SNR is defined as the ratio of the power of an original
component will be forced to zero will generate lots of speech signal and the power of the error signal and
acoustic hole. mathematically defined as:

Speech Quality Performance Measurement Matrix:
Following three different performance parameters are used
to measure the quality of reconstructed speech. Here we (11)

1 2
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Table 9: MSE of speech signal after applying different transform
Sparsification by retaining MSE DRT MSE DFT MSE DCT MSE DWT
Only CPI 0.001900 0.036900 0.014300 0.015400
CPI +Mid frequency 0.000647 0.034700 0.012200 0.011500

Table 10: SNR of speech signal after applying different transform
Sparsification by retaining SNR DRT (dB) SNR DFT (dB) SNRDCT (dB) SNR DWT (dB)
Only CPI 25.47 10.9125 15.03 14.7028
CPI +Mid frequency 27.39 11.7032 17.97 15.9656

Table 9 and Table 10 represents MSE and SNR of Framing and windowing the speech signal of
DRT, DFT, DCT, DWT for 100 different speeches duration 25-30 milliseconds.
randomly selected from TIMIT database. For each frame compute the periodogram and

MSE of DRT is least and SNR is more, therefore, DRT estimate the power spectrum.
is suitable for sparsification of the speech signal in ASR Apply Mel-filter bank (A typical 29 filter bank is
application. taken into consideration) to the power spectrum [12].

PESQ is a generally utilized, upgraded perceptual Sum the energy in each filter.
estimation  for  voice  quality  in   information  transfers. Take the logarithm of all filter bank energies.
By and large, speech quality appraisal can be categorized Take the DCT of the log filter bank energies.
as one of two classifications; subjective and objective Keep 19 DCT coefficients and discard the rest.
quality measures. Subjective quality measures depend on RASTRA Filtering [13]. 
the examination of original and reconstructed speech Delta and Delta Delta filtering to achieve 60-
signal by an audience or a board of audience members. dimension feature vectors
The scope of PESQ varies from 0.5 to 4.5, with the lower Frame dropping
values interpreted as poor speech quality. Feature Warping [14].

It is observed that for the case of up to 25% data
compression the PESQ of the reconstructed speech data Baseline Speaker Modeling Techniques in ASR System:
does not deviate so much from the standard value that is In this paper, two modelling configurations for ASR have
3.2331. Indeed, for the case of up to 12.5% data been taken into consideration.
compression, the PESQ of the reconstructed speech data
deviates considerably from the standard value that is Gaussian mixture model (GMM) [15].
2.1543. State-of-the-art i-vector framework [16].

Experimental Results: Experimental assessment of the With the GMM model, we have tested the ASR
DRT sparsification algorithms with CPI+mid frequency system with original and sparsified reconstructed speech
components continued with the 100 speakers from TIMIT signal for short utterances. The i-vector-based ASR
database and NIST database. The sparsification with framework was assessed by having right around 10
retaining CPI alone and reconstructed speech signal seconds of original and sparsified reconstructed speech
generate acoustic hole, therefore, we are not evaluating for training and testing. i-vectors are one case of
ASR with this speech signal. In this paper, we are subspace ASR modelling approaches that can be utilized
comparing sparsified reconstructed speech (CPI + Mid to minimize the dimensionality of the training speech data
frequency component) and original speech signal based before applying classifiers to perceive the dialect utilized
ASR. as a part of utterances.The dimensionality decrease

Speaker Specific Feature Extraction of Original and costly, which could empower us to train the framework
Sparsified Reconstructed Speech Signal: The speaker with more data. We meant to exhibit the outcomes for the
specific information of original and reconstructed speech GMM-based framework as a proof of idea and considered
signal  is  captured in this research by the most prominent the i-vector-based ASR system for analyzing the
features Mel-frequency Cepstral Coefficients (MFCC) comparative efficiency of the system. For the i-vector
[11]. The steps involved in capturing acoustic features are based ASR system, as it happens in genuine legal
as follows: applications,  we  took  a  cutting  edge  ASR  system [17],

should make training of classifiers less computational
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Table 11: ASR efficiency of TIMIT and NIST Corpora
Train/ Test with Original Speech Signal Train/ Test with Reconstructed Speech Signal
-------------------------------------------------------------- --------------------------------------------------------------

Modeling Corpora Male Female Together Male Female Together
GMM TIMIT 98.9% 98.4% 98.7% 94.4% 93.7% 94.2%

NIST 98.6% 98.2% 98.4% 94.2% 93.3% 94.1%
i-vector TIMIT 99.3% 98.8% 99.1% 94.9% 93.9% 94.8%

NIST 99.1% 98.4% 98.9% 94.6% 93.3% 94.5%

[18]  off-the-rack  where  ASR  parameters can't be Performance Evaluation of Speaker Recognition
adjusted to the test condition as a result of insufficient
data. The i-vector-based ASR system requires a modest
bunch of highlight vectors for solid extraction of adequate
statistics which is uncommon in short utterances and we
utilized an expression determination convention not the
same as the one in the GMM case.

The GMMs with a corner to corner covariance
structure were trained with 32 Gaussians. The i-vector-
based ASR system was created in Radboud University
Nijmegen as a part of the college submission to NIST ASR
assessment in 2012 [17, 18]. A male/female based
universal background model (UBM) [19] with 2048
speaker specific information was trained utilizing a subset
of NIST SRE 2004–2006, Switchboard cell stage 1 and 2
and the Fisher English corpora. To factorize the GMM
mean supervectors, the aggregate variability space [20]
was trained with the same information concerning UBM
with 400 data. During pre/post-processing of speech
signal level i-vectors, we utilized linear discriminate
analysis (LDA) projection to upgrade the detachability of
classes and diminish the i-vectors' measurement to 200.
Prior to probabilistic linear discriminant analysis (PLDA)
[21] modeling, we eliminated the mean, performed
whitening utilizing within-class covariance normalization
(WCCN) [22] and standardized the length of i-vectors [23].

Experimental Results: Experimental assessment of the
original and sparsified acoustical balanced reconstructed
speech signal continued with the 100 speakers from
TIMIT and NIST speaker recognition evaluation corpora.
Table 11. presents the over all ASR efficiency for
TIMIT/NIST corpora.

It is observed from Table 11. in the TIMIT/NIST
corpora the performance of ASR little inferior for the
female speaker but both corpora demonstrate the same
general trend with GMM and i-vector modeling
techniques. The i-vector based ASR gives the highest
efficiency up to 99.1%, 94.80 % and 98.90%, 94. 5%
respectively for original and Scarified reconstructed
speech signal for TIMIT/NIST corpora.

Systems: With a specific end goal to check the
performance of sparsification and acoustic hole balancing
algorithm based ASR, we processed the real match scores
with original speech signal and Scarified reconstructed
speech signal with the impostor match scores. The
Detection Error Trade-off (DET) of every experiment has
appeared in the accompanying figures. Fig. 14. compares
GMM based ASR system performance with TIMIT
corpora in two different modalities: that is original speech
and sparsified reconstructed speech signal. GMM based
ASR performance with TIMIT corpora an Equal Error rate
(EER) value of about 1.6% and with sparsified
reconstructed speech about 4.3%.

GMM based ASR performance with NIST corpora an
EER value of about 1.9% and with sparsified
reconstructed speech the EER of about 4.8%. Fig. 15.
compares GMM based ASR system performance with
NIST corpora in two different modalities: that is original
speech and sparsified reconstructed speech signal. The
Same trend can be observed that TIMIT corpora
performance is superior that NIST.

Based on the analysis of the DET curves in Fig. 14.
and Fig. 15. it is clear that by employing the sparsification
based algorithms which are perfectly balancing the
acoustic hole, spectrum can be compressed up to 25%
without degrading much more ASR system performance.

Fig. 16 compares i-vector based ASR system
performance with TIMIT corpora in two different
modalities: that is original speech and sparsified
reconstructed speech signal. I-vector based ASR
performance with TIMIT corpora an EER value of about
1.4% and with sparsified reconstructed speech the EER of
about 4.1%. 

Fig. 17 compares i-vector based ASR system
performance with NIST corpora in two different
modalities: that is original speech and sparsified
reconstructed speech signal. The same trend can be
observed that TIMIT corpora performance is superior that
NIST. i-vector based ASR performance with NIST corpora
an EER value of about 1.5% and with sparsified
reconstructed speech the EER of about 4.2%.
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Fig. 14: DET curve of GMM based ASR for TIMIT Corpora

Fig. 15: DET curve of GMM based ASR for NIST Corpora

Fig. 16: DET curve of i-vector based ASR for TIMIT Corpora
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Fig. 17: DET curve of i-vector based ASR for NIST Corpora

CONCLUSION 2. Dehak,   N.,   P.   Kenny,    R.  Dehak,  P. Dumouchel

In this research, we have presented an efficient ASR for   speaker       verification.       IEEE     Trans.
system based on original speech and acoustically hole Audio,   Speech     and     Language   Processing,
balanced sparsified reconstructed speech of TIMIT and 19(4): 788-798. 
NIST corpora. The study capered with GMM and i-vector 3. Mandasari, M.I., M. McLaren and D.A. VAN
modeling method. The I-vector modeling technique was Leeuwen, 2012. The effect of noise on modern
adopted in this work, due to its high accuracy. Achievable automatic speaker recognition systems. In Proc. Int.
spectral compression of voice samples was found to be Conf. on Acoustics, Speech and Signal Processing
about 75% with ASR efficiency of 94.8% with baseline (ICASSP 2012).
efficiency of 99.1% in case of i-vector modeling of TIMIT 4. Mandasari, M.I., M. McLaren and D.A. Van
corpora. In the case of NIST corpora, the ASR efficiency Leeuwen, 2011. Evaluation of i-vector speaker
is 94.5% with sparsified reconstructed speech and 98.9% recognition systems for forensic application, In Proc.
the original speech signal respectively. Interspeech, pp: 21-24. 

The EER of TIMIT corpora and i-vector-based 5. Furui Sadaoki, 2005. 50 Years of Progress in Speech
modeling is 1.4% for original speech signal and 4.1% for and Speaker Recognition Research, ECTI
sparsified reconstructed speech signal respectively. We Transactions on Computer and Information
have achieved a reduction of 75% of the speech signal Technology, 1(2): 64-74.
with scarification of EER 2.7% only. Future work would be 6. Plumbley, M.D., T. Blumensath, L. Daudet, R.
to consider improving the sparsified reconstructed speech Gribonval and M.E. Davies, 2010. Sparse
signal efficiency to approach to the baseline efficiency. Representations  in  Audio  and Music: from Coding
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