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Abstract: In medical imaging, the detection of tubular structures like blood vessels or airways is a prior step
for quantification of diseases and evaluation of treatment progress. An enhanced algorithm for extraction of
blood vessels is  described  in  this  paper  to  improve  the  detection  of  low  contrast  blood  vessels  and
avoid undesired merging of adjacent objects because of the  intrinsic  usage  of  low  level  Gaussian  Kernel.
The proposed method uses curvelet based contract enhancement and a bi-Gaussian function with Vessel
Enhancement diffusion filter. The bi-Gaussian kernel replaces the low level Gaussian kernel by allowing
independent selection of scales in foreground and back ground. The proposed method reduces interference
from adjacent object by selecting a narrow neighborhood for foreground and background. In this approach an
integrated framework of the conventional vesselness function and a reformulated gradient flux are used.
Experiments and results of the proposed methods delivers accurate and stable tubular structures and
outperforms several conventional derivative filters in separating closely located adjacent objects as well as
image noise.
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INTRODUCTION central axis of blood vessels based on the resampling of

Detecting tubular structure in digital images is an axis is described in [1-10]. In this the resampled slice
important low level operation of computer vision and has contours that form the surface of blood vessels, are
many applications such as treatment of vascular diseases. detected using gradient information and used iteratively
On the other hand, manual segmentation of blood vessels to refine the medial axis of the vessels. Although this
is a time consuming task. Advances in the computation method can produce accurate medial axes, it requires user
power of modern computers automated segmentation interaction to specify the initial location of blood vessels.
methods are capable of producing segmentation results in A stochastic vessel tracking approach based on
a quite short period of time than manual segmentation. tubular models proposed in [9] attempts to find the
Therefore advanced vessel extraction techniques are parameters of a tubular model that best matches the local
receiving significant attention. Vascular structures in the features of the data. An extension of this idea is described
medical images are commonly separated from its in [11-27], in which a deformable tubular model is used.
background prior to clinical evaluation. This is because Unlike a traditional cylindrical coordinate system, the
the extracted vascular structures are analyzed directly and tubular coordinate system accommodates curved axes and
surgical planning can be prepared. In such a way can generate smooth and accurate surfaces of blood
extracting and separating blood vessels from non-vessel vessels. This method requires user interaction for the
structures in medical image play a vital role. A technique specification of curved axes and occurrence of problems
is used to extract the blood vessel by optimizing the at the bifurcations of blood vessels.

slices that are orthogonal to the estimated blood vessel
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In medical imaging, tubular structures are used for In the proposed work, a filtering kernel is used for
detection, classification and quantification of
abnormalities and for treatment planning [21]. There are
many techniques used for detecting the vascular
structures and a recent survey can  be  found  in  [14].
From the literature survey in [14] it is found that derivative
filters have put on much attention. The image derivatives
were often used to detect the boundaries or centerlines of
tubular structures [11]. The boundaries are considered as
antisymmetry structures and first order gray level
derivatives were used to detect the boundaries. As an
application, in the context of automatic lung nodule
detection in thoracic CT scans [2, 3], blood vessels and
nodules may share similar characteristics locally, global
constraints inherent in the data such as the continuity of
blood vessels may be used to discriminate between them.
Thus the segmented blood vessels can be used to resolve
local ambiguities based on global considerations.
Experimental results have shown that by using extracted
blood vessels it is possible to eliminate approximately
38% of the false positives generated by an existing
automated nodule detection system [3]. On the other
hand, centerlines are typically even or symmetric
structures and should be detected with the second-order
derivatives. The structure tensor method was
implemented to determine the local boundary direction
and strength [1]. Hessian Line filters are used for center
line extraction [7, 17, 20]. A hybrid method known as
medialness tube filter which based on Hessian and
boundary gradient are used to determine the axial
directions and local diameters [12]. Normalization scheme
is used in account of size variation. In this method the
filters identify the objects at different scales and combine
all the results into a single output response [15]. All these
methods employ Gaussian kernel to calculate the spatial
intensity derivatives.

An adaptive multi local medialness function is used
to improve the centerline detection [18]. In this method
instead of using the Gaussian linear scale a first derivative
of bivariate Gaussian is used to measure the boundaries.
To extend the gradient around the boundaries into tube
centers a Gradient based vector flow is adopted [26].
Optimally oriented flux is used to determine the
orientation  difference  in  curvilinear  structures  [13].
This method works well against the disturbances created
by close objects and is employed for vessel segmentation.
A recent review literature on Vessel segmentation and tree
construction is presented. The vessel tree is
reconstruction based on a fuzzy shape representation of
the data which is obtained by using regulated
morphological operations [1].

detecting closely located structures. First, a curvelet
transform is used for contrast enhancement. Second, a bi-
Gaussian keranl is used to minimize the adjacent
disturbances. Third, a vessel enhancement diffusion filter
is used to used to improve the extraction of adjacent
tubular objects. 

The paper is organized as follows: In section 2, a
review on the conventional filters is described. Section 3
describes the proposed work Curvet based bi Gaussian
for vascular structure detection. Finally, in section 4 we
conclude with a discussion on the experimental results
and present directions for future work and conclusion in
Section 5.

Review on Conventional Filters: In this section a review
of several conventional line filters and tube filters are
discussed. To understand the drawbacks of the existing
method, consider the perspective of the differential
convolution [10]. Consider a low pass filter f( , x) =
I(x)*h( , x) where h represents the smoothing kernel,
represents the scale and I(x) represent the input image.
Then the i-th order derivative in the direction  can be
obtained by

(1)

The second order derivative operator applied to
detect structures of 2D or 3D images can be divided into
Laplacian and Hessian, which usually combine the one
dimensional derivatives. To describe the objects with
different sizes, the filters are merged with a multi scale
framework.

The subsequent section describes the conventional
filters used for the detection of tubular structures. This
paper focuses on the kernel h( , x) and its derivatives.

Vesselness Models: The vesselness models are the
conventional Gaussian Line filters. These filters depend
on the orientational difference and anisotropic
distribution of the second-order directional derivatives. In
this the tube shape is measured as equation (2)

(2)

where  represent the unit vector and H  represent the
Hessian at scale . The directional Derivative of Gaussian
[22] can be obtained as equation (3)
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(3)

Isotropic  kernel  [8]   is   defined   by   radially
rotating  the   Derivative   of   Gaussian   and   developed
a  medialness  filter  for  the  extraction  of  anatomic
objects  in medical  images.  Laplacian  of   Gaussian  [6]
is  developed  by  neglecting  the   orientational
difference.  In  both  the  filters  the  scale  normalization
factor  NF( )  is . The drawback of using Gaussian2

kernel  is   that   the   object   boundaries   are  smoothed
so that the closely located structures tend to merge
together.

Flux based Filter: Vasilevskiy et.al introduced a flux
based tube filters for vessel segmentation [21]. The Contrast Enhancement using Curvelet Transform:
gradient flux of an image is the can be represented as
equation (4)

(4)

where  represents the spherical radius and
represents the smoothed

rectangular function. Optimal oriented flux model is an
improved flux filter which is defined as a second order
derivative and is defined in equation (5)

(5)

The advantage of flux based filters compared to
Gaussian Line filters is the better performance in
separating adjacent objects.

Medialness Filter: Medialness filter estimates the
likelihood of a point belongs to the medial axis of the
object. An adaptive medialness model is developed for
three dimensional vessel segmentation [12]. In this
method the orientation of the filter kernel is defined by
Eigen vector. The medialness function is defined as in
equation (6)

(6)

where  represents the smoothed two dimensional
rectangular kernel. The advantage of medialness is that it
detects the vessel boundaries more accurately. The
drawback of medialness is that the intra region
discontinuities are wrongly detected.

Table 1: Summary of the derivative filter for detection of tubular structures

Method Filtering Kernel Derivative operator NF( )

LoG [8] Gaussian Laplacian 2

Vesselness[7][17] Gaussian Hessian 2

Flux[22] Rectangle Laplacian

OOF[13] Rectangle Hessian

BG[4] Gaussian & Rectangle Hessian 2

Proposed Work Bi Gaussian Hessian 2

Proposed System: This section describes the proposed
vessel segmentation algorithm in which first the image is
enhanced using curvelet transform followed by a bi-
Gaussian with vesselness enhanced diffusion filtering of
the enhanced image.

Curvelet Transform deals with edge discontinuities and is
used for edge enhancement in the image. Curvelet
coefficient [19] is modified to enhance the edges in the
image. The function k  is defined to modify the values ofc

the curvelet coefficient. The value of k  is definedinc

equation (7).

(7)

where  represents the noise standard deviation, p
represents the degree of non-linearity, c represents the
normalization parameter, s represents the dynamic range
compression and m represent the value under which the
coefficients are amplified. The value of m can be derived
from m=lM with the value of l<1, where M  represent thec c

Maximum curvelet coefficient. The following are the steps
for curvelet enhancement in the image.

Estimate the noise standard deviation  in the input
image I.
Calculate the curvelet transform for the input image.
This results in a set of bands D . Each band ii

contains N  coefficients which defines the given leveli

of resolution.
Calculate the noise standard deviation  for eachi

band i of the curvelet transform. 



( ), ,c i k iy D

. "( , ) ;
( , , ) "( , ) ;

. "( , ) ;

b b

b

b b

k G x x
BG x G x x

k G x x

− + ≤ −
= <
 + − ≥

0
"( , )

"( , )b b

G x dx
k

G x dx
∞= −

+ −

∫
∫

( )

2

221( , )
2

x

NG x e
−

=

'( , ) 0h x dx
−

=∫

"( , ) 0h x dx
−

=∫

2
"( , , ) 0, b

bG x dx we get k
−

= =∫

'( , ,0) 0bBG =

0
'( , , ) "( , , ) '( , ,0)

. '( , ) ;
'( , ) ;

. '( , ) ;

x
b b b

b b

b b

BG x BG x dx B

k G x x
G x x

k G x x

= +

− + ≤ −
= <
 + − ≥

∫

0

1

0

1

( , , ) '( , , ) ( , ,0)

. ( , ) ;
( , ) ;

. ( , ) ;

x
b b b

b b

b b

BG x BG x dx B

k G x c x
G x c x

k G x c x

= +

− + + ≤ −
= + <
 + − + ≥

∫

1
2

0
1. ( , ) ( , ) 1

2
b

b b
ec k G G  = − = −  

Middle-East J. Sci. Res., 24 (1): 88-96, 2016

91

For each band i calculate the following i. The zero order kernel h( ,x) should be a decreasing
Maximum M  of the band function of  to restrict weighted average betweeni

Multiply each curvelet D  coefficient by adjacent objects.i,k

ii. The zero order kernel h( ,x) should be a even

The image is enhanced and is reconstructed using invariance.
the modified curvelet coefficients. iii. The first order kernel h’( ,x) should be a odd

Bi Gaussian Kernel: Bi Gaussian is obtained by merging
two Gaussians with different parameters. Bi Gaussian
Kernel allows selection of independent scales in the
background and the foreground [4]. This leads to noise
suppression and reduce the disturbances caused by
adjacent objects. The conventional Gaussian kernel G( ,x)
suffers from the disturbances of adjacent structures
because of the use of single scale for the foreground and
background. Consequently, interference is introduced and
hence the neighborhood will be sampled. On the other
hand the rectangular kernels R( , ,x) has the advantageb

of separating adjacent structures but suffers from contrast
computation due to the smaller gradient scale . In thisb

paper, the bi Gaussian is implemented by combing the
merits of Gaussian kernels and rectangular kernels. A
second order of the Gaussian kernel is used to shift at the
boundaries x=± , where  represents the scale. A second
order bi Gaussian is defined by the equation (8)

(8)

where k is used to balance the positive and negative
weights. K can be defined as in equation (9)

(9)

where  represent the scale on the foreground and b

represent the scale on the background and N dimensional
G( ,x) are defined as in equation (10)

(10)

Combining the advantages of the Gaussian and
Rectangular kernels the adjacent objects are clearly
separated. In this paper some prior assumptions are
adopted which is by other authors [16][19].

function, i.e h(x)=h(-x), which responds to rotational

function, i.e h(x)=-h(x) and its integral
, which responds to asymmetric

objects.
iv. The second order kernel h”( ,x) should be a even

function and its integral  which

responds to the detection of symmetric objects.

Deduction  of  Bi  Gaussian  Kernals:  The deduction  of
bi Gaussian is necessary to exploit the capability of
Hessian matrix in orientation and structure discrimination.
This is done by integrating equation (8). According to the

prior condition iv, i.e 

The first order bi Gaussian kernel is derived from the
prior condition iii , BG’(x) can be defined
as follows.

(11)

Finally, the zeroth order bi Gaussian kernel is derived
as follows:

(12)

where c  and c are constants and are defined in equation0 1

(13) and (14)

(13)
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(14) When mapped with Hessian matrix, the eigen values

Normalization: The criteria for normalization are as
follows:

I.  represent the constant

conservation
ii.  remains

unchanged with  represents the step conservation.
iii.  should be

kept constant and it represents the bar conservation.

Based on the normalization criteria, the normalization
co-efficient for the second order bi Gaussian kernel

 is chosen to be .2

Vesselness Measure: The vesselness measure is based
on the vessel enhancement diffusion filter which uses the
eigen values of the Hessian along with bi Gaussian. To
analyze the behavior of an image I, the expansion of the
Taylor series in the neighborhood of a point x , is defined0

in equation (15)

(15)

where  represents the gradient vector and

represents  the Hessian matrix of the image computed at
x0 at scale . The Taylor series expansion on an image I
approximates the structure of the image upto second
order. The differential operators used are the second order
derivatives of bi Gaussian kernels defined in equation
(16).

(16)

where y is the normalized scale chosen from differential
operators and is chosen as 2.

The principal directions along which the second
order derivative of the image is decomposed is extracted
using the eigen values of the Hessian. The direction along
the vessel can be computed directly using the equation
(16).

(16)

where  represents the eigen value corresponding the

k –th normalized eigen victor  of the Hessian .

extracts three ortho-normal direction which are invariant
upto a scaling factor. Assuming the eigen values i in
sorted order (i=1,2,3) then , a bright tubular

structure will have i=0 with its eigen vectors
corresponding to the axial directions and  with
the eigen vectors corresponding to the cross section of
the plane. The second order structureness will be low in
the background since no structures are present and the
eigen value will be very small. For the region with high
contrast than the background the normalization scale will
be larger due to the existence of atleast one large eigen
value. Therefore the vesselness function  can be
defined as equation (18)

(17)

where ,  and c represents the thresholds that controls
the sensitivity of the filters to measure R , R  and S whichA B

are defined in the following equations (18) – (20)

(18)

(19)

(20)

For two dimensional images the vesselness measure
can be obtained using equation (21) 

(21)

To account for the variety of tubular sizes, the final
estimation of the vesselness measure is obtained by
multiscale integration which is defined in equation (22).
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(22) f(x)=FFT (FFT[I(x)].FFT[BG(x)])

where  and  represents the minimum and maximum The codes are implemented in matlab and ismin max

scales. embedded with the FFT library. The codes for curvelet are

Experimental Results:  In this section the curvet based bi modified to fit the application. 
Gaussian technique is compared with the traditional
methods using real images as well as the bi Gaussian RESULTS AND DISCUSSIONS
kernel is compared with the conventional Gaussian kernel
and Rectangular kernel on synthesized signal, since the The conventional derivative filters have several scale
proposed work uses the bi Gaussian kernel with combines space parameter which include , that represent the
the merits of Gaussian and Rectangular kernel. maximum scale and , that represent the minimum scale

Algorithm Implementation: In this paper the image is conducted on synthesized signal to validate the influence
Fourier transformed and is multiplied with the bi Gaussian of  to various filters. The second order derivatives of the
kernel and is transformed back using inverse Fourier Gaussian, Rectangular and bi Gaussian are convoluted
transform. To speed up the computational process, Fast with the synthesized signal[4]. The results are showed in
Fourier Transforms(FFT) are used. The response of the Fig.1. From the results it is clear that >1 provides
filter is calculated as follows: smoother results and <1 separates adjacent objects. 

-1

downloaded from the internet and the coefficients are

max

min

and  the normalizing coefficient.  and  are sensitivemax

parameters and are chosen carefully. Experiments were

Fig. 1: Testing the synthesized signal with the parameter  in various kernels 
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Fig. 2: Results on 2-D input data using the various filtering kernels

Testing the real input images with the proposed
system and the various kernels are shown in Fig 2. The (23)
results show that the Bi- Gaussian applied to the images
smoothed using curvetlet transform provide better results
in vascular extraction than the traditional kernel filters. By (24)
using curvelet transform the image is smoothed and
vessel is enhanced and choosing a scale in foreground
and background makes the vessels appear clear.

Analysis of Experimental Results: The performance
assessment of the vessel extraction is done by comparing (25)
the results obtained by the various conventional filters
with the proposed system. The efficiency of the filtering
kernels is evaluated based on the vessel separation.
Sensitivity, Specificity, Accuracy, F1 measure and false (26)
discovery rate are considered to evaluate the efficiency of
the proposed system compared to the conventional
filtering kernels and are given in equations (23) – (27). (27)

Fig. 3: Flow chart of evaluation of vessel separation in 2D images
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Fig. 4: Evaluation based on Sensitivity and 1-specificity

Table 2: Performance evaluation of filtering of 2D vessel on input images

Test Performance Gaussian Rectangular Bi-Gaussian Proposed
Image metric Kernel Kernel Kernel Work

T1 Accuracy 98.6 99.1 99.6 99.8
F1 measure 94.8 96.7 98.6 99.4

T2 Accuracy 99 99.2 99.6 99.9
F1 measure 94.4 96 97.7 99.2

T3 Accuracy 90.6 94 96.8 98.4
F1 measure 93.2 95.3 96.8 99

T4 Accuracy 97 98 99.3 99.2
F1 measure 95.6 88.3 99.1 99.4

T5 Accuracy 98.5 98.07 99.1 99.6
F1 measure 93.2 92.1 98.2 98.8

T6 Accuracy 95.4 94.9 99.4 99.7
F1 measure 98.2 98.7 98.8 99.2

T7 Accuracy 97.8 97.9 97.4 97.6
F1 measure 98.2 98.4 98.2 98.4

T8 Accuracy 90.6 89.7 96.5 99.3
F1 measure 92.2 90.9 97.3 98.9

T9 Accuracy 96 95.78 98.3 99.8
F1 measure 94.8 94.1 98.3 99.2

T10 Accuracy 94.7 93.8 99.1 99.2
F1 measure 92.6 91.2 99.2 99.4

where the True Positive, True Negative, False Positive
and False Negative values are calculated based on the
extracted vessel shown in Fig.3, which represents the
flowchart to evaluate the vessel separation. Table 2
represents the performance evaluation of the proposed
system with the traditional filtering methods based on
accuracy and F1 measure and Fig 4 represents evaluation
results of filtering methods based on Sensitivity and 1-
specificity. The false disclosure rate of the proposed
system is 2.6%. 

The results performance evaluation of filtering of
2Dvessels is shown in Table 2. From the results it is clear
the proposed system clearly identifies the vessels when
compared to the conventional filters.

CONCLUSION

In this paper, a multi scale derivative filter is used to
detect the tubular structures with the aim of separating
adjacent objects in the tubular structures. First, enhancing
the vessel using curvelet transform makes it efficient to
select scales to separate the foreground and the
background. Based on this idea, a bi Gaussian kernel is
selected which merge the merits of the Gaussian and
Rectangular kernel to efficiently detect the tube-like
structures. The performance of the method is
demonstrated in real input images. From the analysis it is
clear that the proposed system outperforms the traditional
filtering kernels. Compared with the conventional
Gaussian kernel, the proposed method curvelet with bi
Gaussian reduces the adjacent disturbances very
effectively. The use of the proposed system is to extract
the reliable information from closely located structures.
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