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Subalgebras of the Free Heyting Algebra on One Generator

R. Elageili

Department of Mathematics, Benghazi University, Benghazi, Libya

Abstract: In this paper we describe the subalgebras of the free Heyting algebra A  on one generator, generated1

by an arbitrary single element of A  and we give a general theorem which provides an explicit classification of1

all the subalgebras of A .1
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INTRODUCTION In  contrast  with  Boolean  algebras,  finitely

Heyting algebras are a generalization of Boolean wasshown  by  Mckinsey   and   Tarski   in   the  1940s
algebras; the most typical example is the lattice of open ([1]).  For   one   generator, A    is   well  understood
sets of a topological space. It is well known that Heyting (The Rieger Nishimura ladder), but from two on, the
algebras are algebraic models of intuitionistic structure remains mysterious, though manyproperties are
propositional logic, which is properly contained in known.
classical propositional logic. Heyting algebras are special With  the  help  of recursively described
distributive lattices and they form a variety. Kripkemodels  H ,  Bellissima  ([2]) gave a

Definition: An algebra A = (A, , , , 0, 1) is a Heyting due to Grigolia ([3]) and Esakia.
algebra bounded distributive lattice with least element 0 The free Heyting algebra A  on one generators may
and greatest element 1 and For all x, y A, x y is the be defined as the Lindenbaum algebra ofintuitionistic
greatest element z of A such that x z y, (wkere is propositional logic IPC on a set P = P  of one
defined by: x y if and only if x y = x). This element x propositional variable, this is theso-called `Rieger-
y is called the pseudo-complement of x with respect to. Nishimura lattice', or `ladder', [4, 5], has an explicit

In any Heyting algebra the pseudo-complement x description as a lattice; allelements which are not its least
of x is defined by x = x  0. Note that x x = 0 and or greatest elements 0,1, lie in antichains of size 2, of
that x is the greatest element having this property. which thereare countably many arranged in  levels and

A complete Heyting algebra is a Heyting algebra that the partial order relation between these is quite easilyand
is a complete lattice (every subset has a supremum). explicitly described.

Let V be a variety. Recall that an algebra A V is said Our aim in this paper is to provide an explicit
to be a free algebra over V, if there exists a set E A such classification of all the subalgebras of A .
that E generates A and every mapping from E to an
algebra B V can be extended uniquely to a Definition: Let A be an algebra, X  A. The subalgebra
homomorphism from A to B. In this case E is said to be a generated by X is the intersection of allalgebras
set of free generatorsof A. If E is finite then A is said to containing A written X . (This can be constructed by
be a finitely generated free algebra. We denote a finitely closing up X under the operations.)
generated free Heyting algebra with  free generators The  Rieger-Nishimura  Ladder, A ,  is shown in
(which is uniquelydetermined up to isomorphism) by A . Figure 1.
Free Heyting algebras arise naturally as the
Lindenbaumalgebras of intuitionistic propositional logic Subalgebras of A : First I give the subalgebras of A
(IPC) with  propositional variables over the emptytheory. which are generated by only one element.

generated  free  Heyting  algebras  are infinite as

1

representationof A . Essentially the same construction is
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Fig. 1:

Example 2.1: S is the subalgebra generated by either 0 or
1.

Then S contains only {0, 1} see Figure 1.

Example 2.2: S is the subalgebra generated by p.

Then S equals A  see Figure 1.1

Example  2.3:  The  set  {0, , , 1} as inp p p p

Figure 2 is equal to the subalgebra S generated by either
 or .p p

Indeed, it is closed under { , , }, since  = ,p p

 = 0,  =1 and Table 1shows it is closed under .p p 0

Theorem 2.4:  If  x  A  and x is above every atom, then
 = 0.x

Proof: Suppose that 0. Then y for some atom y.x x

But x y, hence x < x y whichis a contradiction.
Hence the negation of any element of x  A  apart1

from 0, p, p, p is equal to 0.

Example 2.5: S is the subalgebra generated by such x.

Then S is the chain {0, x, 1} see Figure 4.
The previous examples gave a complete description Fig. 4:

of the subalgebras generated by arbitrary single element
of A  and it follows from them that subalgebras of free1

algebras need not be free.
Now, in general I will use the following notation for

the elements of A : see Figure 5.1

Fig. 2:

Table 1:

Fig. 3:
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Fig. 5:

Note that, a  = a , a  = a  and a  = 0 for all I 3, b  =1 2 2 1 i i

0 for all i 2. Proof: As b  is above all the atoms, b  = 0. Also b b

Lemma 2.6: The subalgebra S generated by each of the and so on, so we get all the points of A  above b  as in
following sets: Figure 6. 

1. {a , b } Corollary  2.8:  The subalgebra S generated by the set2 2

2. {a , b } {a , b } fog n  3 is nearly A .1 2

3. {a , a }1 3

4. {a , a } Proof: This is an immediate consequence of the previous2 3

is equal to A . lemma, since a b  = b .1

Proof: To prove this lemma it is enough to generate b Lemma 2.9: The subalgebra S generated by the set {a ,1

inside S. b } (or the set {{a , b ) for n  2 is quasi-linearly

1. a b  = b2 2 1

2. a  = a  and a b  = b Proof: As b  is above all the atoms, b  = 0. Also a b1 2 2 2 1

3. a  = a , a a  = b , a b  and a b  = b = a , b a  = 1 and a b  = an , b a  = 1 and1 2 1 2 3 3 3 2 2 1

4. a a  = b .n a a  = a , a a  = a  and a a  = b .2 3 1

Definition: We say that a subset X of A  is nearly A  if its starting at b , see Figure 6. To verify that it is subalgebra,1 1

complement is finite. A partially ordered set (X, < ) is note that it is clearly a lattice and it is also closed under 
quasi-linearly  ordered  if  there  is  a linearly ordered set as shown in Table 2.
(Y, <) and a homomorphism  from X onto Y such that for
each y, (y) is either a singleton or a diamond. Corollary 2.10: The subalgebra S generated by the set1

Lemma  2.7:  The  subalgebra  S  generated  by  the  set
{b , b } for n  2 is nearly A . Proof: Since a a  = b .n n+1 1

Fig. 6: 

n n n n+1

= 1, b b  = a , a b  = b  and a b  = an+1 n n+1 n+1 n+1 n+2 n+1 n+1 n+2

1 n

n n 1

n n n-1

n+1

n n+2 n

ordered, with just one diamond.

n n n+1 n

n+2 n n+1 n+2 n +1 n n+2

n+1 n+2 n+2 n+2 n+1 n+1 n+1 n+2 n+3

Hence we get 0, b , a , a , b , 1 which is a diamondn n+1 n+2 n+3

n

{a , a } for n  3 is quasi-linearly ordered.n n+1

n n+1 n-1
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Table 2: Let D , D  be any two diamonds occurring in S. Then

Fig. 7: 

Theorem 2.11: The subalgebras of A  are all of one of the1

following forms:

Nearly A (differs from A  on a finite set).1 1

Quasi-linearly ordered (linearly ordered and
decorated by diamonds).

Proof: Let S be a subalgebra of A .1

By Example 2.2 and Lemma 2.6 we may assume that S
does not contain any of the sets {b }, {a , b }, {a , b },1 2 2 1 2

{a , a }, or {a , a } since then we obtain A  itself. If S1 3 2 3 1

contains {b , b } for some n  2, then we use Lemma 2.7n n+1

to see that S contains a subalgebrawhich is nearly A , so1

is nearly A  itself.1

Now, suppose that S does not contain any of these
subsets. Let x and y be any incomparable members of S.
Then by inspection, {x, y} = {a , b } of {a , a { for somen n n n+1

n Corollary 2.8 tells us about the first and Corollary 2.10
about the second.

1 2

D  = {b , a , a , b } and D  = {b , a , a , a , b }1 m m+1 m+2 m+3 2 n n+1 n+2 n+2 n+3

for some m,n. Suppose that m < n. Then n m + 1 or m +
2  as the former gives {b , b }  S and the latter givesm m+1

{b b ,}  S, contrary to assumption. Therefore, m + 3 n n+1

n and D D . Since all points of S not in diamonds are1 2

comparable with all members of S it follows that S is quasi-
linearly ordered.

Now using Theorem 2.11 we can explicitly describe all
subalgebras of A . If S is nearly A  thenthe least x S1 1

such that for all y x, y  S must equal b  for some nn

(where this includes thepossibility of n = 0 where b  = 0)n

and then since a b  = b , for n > 0 we have a  S.n n n-1 n

Using the proof of Theorem 2.11 we can then see that the
{y  S: y x} is quasi-linearly ordered. Which quasi-
linearly ordered sets can arise is restricted in a similar way
to what follows.

To complete our description we must just characterize
which S arise as quasi-linearly ordered.

Let X, Y and Z be three disjoint subsets of n: n 2
satisfying:

If m < n in X then n = m + 3 or n > m + 4.
If n X, m Y then n m ± 1and n = 3  m ± 1.
If n X, m Z then m n ± 1 and m n ± 2.
If m < n in n m + 1 then.
If m < n in Z then n m + 1.
If m < n such that m Y and n Z then n m + 1 and
n m + 2.
If m < n such that m Z and n Y then m2.

To see where these clauses come from, suppose that
S is quasi-linearly ordered and let.

X = {n: b  id the least point of a diamond of S},n

Y = {n X U (X + 3): b  S} andn

Z = {n  (X + 1)  (X + 2): a  S}, where X + i = {n + I: nn

X}.

Thus the diamonds of S are {b , a , a , b } for nn n+1 n+2 n+3

X, the isolated b s of S are b  for n Y and the isolatedn n

a s in S are a  for n Z. Then the seven clauses are true asn n

follows.

Clause 1: Says that two diamonds do not overlap, though
they can `touch', but also they cannot beexactly 1 apart
because of Lemma 2.7.
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Clause 2: Says that there are no two consecutive b s CONCLUSIONn

(again because of Lemma 2.7).

Clause 3: Similarly deals with b  related to a , a  (using are nearly A  since there are only countably many finiten n±1 n±2

Lemma 2.9). sets which can be omitted and there are uncountably

Clause 4: Says that two isolated b s cannot be if S is quasi-linearly ordered and infinite then we can omitn

consecutive (Lemma 2.7). any set of isolated points or diamonds in 2  ways and

Clause 5: Says that two isolated a s cannot ben

consecutive (Lemma 2.10). REFERENCES

Clause 6: Corresponds to Lemma 2.9. 1. Mckinsey,  J.  and  A. Tarski, 1946. On closed

Clause 7: Corresponds to the fact that a  = a . 47: 122-162.2 1
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Finally, if {b }  {a }  S where 2 m < n then byn m

clause 6, m < n – 2 and a b  = b  and if {a }  {b }  Sn m m m n

where 2 < m < n then by clause 6, m < n – 2 and b a  =n m

a .m

There are only countably many subalgebras which
1

many subalgebras which are quasi-linearly ordered since

No

obtain other quasi-linearly ordered sub algebras.

elements in closure algebras, Annals of Mathrmatics,

2. Bellissima, F., 1986. Finitely generated free Heyting


