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Abstract: Fractional differential equations have extensively used in physics, chemistry as well as engineering
fields. Therefore, approximating the solution of differential equations of fractional order is necessary.
Consequently,  it  is  essential  to  approximate  the  solution  of  differential  equations  of    fractional  order.
The piecewise quadratic polynomial function based method has been presented in this paper to find
approximate solution for a class of boundary value problems of fractional order. Also we have obtained a
consistency relation which can be applied in computing approximation to solve this group of boundary value
problems. Finally four numerical examples are presented to describe the fractional usefulness of the suggested
method.

Key words:Value problems of fractional order  Riemann–Liouville fractional derivative Caputo fractional
derivative  Piecewise quadratic polynomial

INTRODUCTION problems. Integral boundary conditions also play a part in

In the past, it was believed that classical fractional Furthermore, they appear in the mathematical model
calculus can provide a powerful tool that can be used to created for a micro-electro-mechanical system (MEMS)
describe a large group of dynamic processes in various instrument which basically has been developed to
applied sciences, however it has been proved by more measure the viscosity  of  fluids  that  we  face  with
recent studies that fractional calculus can provide more during oil well exploration [10]. It has been argued that
accurate models compared with the classical fractional solution of fractional equations (FDES) is required in
calculus. This is why fractional calculus has received order   to    analysis    and    designs    various  systems.
agreat degree of interest in recent years. Fractional The methods  in  this category include Laplace and
derivative and fractional integration have many Fourier  transforms,  eigenvector  expansion, method
applications in different complex systems such as based  on  Daguerre  integral formula, direct solution
physics, chemistry, fluid mechanics, viscoelasticity, signal based  on   Grunewald   Letnikov   approximation,
processing, mathematical biology and bioengineering and truncated Taylor series expansion and power series
various applications in many branches of science and method [22-30]. For the purpose of solving (FDES)
engineering could be found [1-20] and bioengineering. numerically  several  algorithms  have  been  created.
Moreover they have various applications in different These include fractional Adams-Moulton methods,
branches of science and engineering. Boundary value explicit Adams multistep methods, fractional difference
problems of fractional order are applied in accounting for methods, decomposition method, variational iteration
various physical process of stochastic transport. Also method, least squares finite element solution,
they have application in investigating the liquid Filtration extrapolation method. Also, they include the Kansa
in a strongly porous (fractal) medium [21]. Moreover, method which is convenient, meshless method that has
boundary value problems with integral boundary been applied in dealing with a variety of partial differential
conditions form a fascinating and important class of equation models [31, 32]. We can see in that there exist at
problems. The special cases of these problems include least one solution of fractional two point boundary value
two, three, multipoint and nonlocal boundary value problems.

population dynamic and cellular systems [6, 7].
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The present research paper is organized in following sections: in section 2 some definitions and theorem are
presented which necessary for our work. In section 3, we establish the direction of the proposed method. In section 4,
we have included some numerical results in order to illustrate the applications and usefulness of the suggested method
[33].

Preliminaries and Notations: In this section, we give some definitions and properties of the fractional calculus. 
Let f(x) be a function defined on (a, b), then

Definition 1: [18] The Riemann–Liouville fractional derivative:

Definition 2: [18] The Riemann–Liouville fractional integral:

Where  is the gamma function?

Definition 3: [18, 26, 29] Right Riemann–Liouville fractional integral:

Definition 4: [4] The Caputo fractional derivative:

The relation between the Riemann–Liouville operator and Caputo operator is given by:

Theorem 1: (Leibniz’ formula) [21] (p. 75) Let f(x) be continuous on [0, t] and let g(x) be analytical at a for all a  [0, t].
Then, for a > 0 and 0 < a < t:

where D  is the ordinary differential operator and n

Lemma 1: [12] If f(x) is continuous and , , > 0, then the following relationships hold:
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where, , is called incomplete gamma function.

Lemma 2: [26, 29] If f(x) is continuous and , < 1,  > 0, then the right Riemann–Liouville fractional operators follow the
following properties:

Theorem 2: [19] Let f(x) C  [0, 1] and  (m – 1,m), m N and g(x) C  [0, 1]. Then for x  [0, 1]:m m

(4) If  with  are such that, for each k = 1,2,...,m–1 there exist i  < n with , then thek

following composition rule holds: .

Analysis of the Method: In order to describe our proposed method, we consider the numerical solution of the following
fractional boundary value problem (FBVP):

(3.1)

subject to boundary conditions:

(3.2)

in which the function p(x) and g(x) are continuous on the interval [a, b] and the operator D  represents the Caputo
fractional derivative. The analytical solution of (3.1–3.2) cannot be taken from for arbitrary choices p(x) and g(x). When

 = 0, the problem (1.1) is shortened to the classical second order boundary value problem.
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The main goal of this research work is to apply piecewise quadratic polynomial spline function to create a new
numerical method for the FBVP (3.1–3.2). To do so, we firstly, convert the FBVPs in (3.1) into the following form [34]:

(3.3)

In the second step, we introduce a finite set of grid points x  by driving the interval [a, b] into n–equal parts:i

(3.4)

Let y(x) be the exact solution of (3.3) and Y  be an approximation to y  = y(x ) obtained by the piecewise quadratici i i

polynomial passing through the points [x , y ] and [x ,y ].i i i+1 i+1

Consider that each piecewise quadratic polynomial segment Y  has the form:i

(3.5)

where a , b  and c  are constants to be determined of 3n equation following:i i i

(3.6)

(3.7)

(3.8)

(3.9)

We obtained Simple form of (3.6) to (3.9) which is as follows:

(3.10)

where

(3.11)

(3.12)

(3.13)

(3.14)
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Fig. 1: Numerical solutions for various values of  of Example 1 

Remark: According to the proposed method, it is clear that the equation system has a unique solution.

Illustrative Examples: We now consider some numerical examples [34] illustrating the solution using Piecewise quadratic
polynomial methods. All calculations are implemented with MAPLE 16.

Example 1: Consider the boundary value problem:

(4.1)

The analytical solution of (4.1) is

(4.2)

The numerical solutions for various values of  are represented in Fig.1.

Example 2: Consider the boundary value problem

(4.3)

The analytical solution of (4.3) is:

(4.4)

The numerical solutions for various values of  are represented in Fig.2.

Example 3: Consider the boundary value problem:

(4.5)

The analytical solution of (4.5) is:

(4.6)
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Fig. 2: Numerical solutions for various values of  of Example 2

Fig. 3: Solution profiles for  = 0.2 of Example 3

Fig. 4: Solution profiles for  = 0.6 of Example 3

The numerical solutions for  = 0.2 and  = 0.6 are represented in Figs. 3 and 4.

Example 4: Consider the boundary value problem:

(4.7)

where



4 2( ) ( 1).y x x x= −
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Fig. 5: The numerical solutions for various values of  of equation  by   the  Kansa  method,  Comput  Math,
Example 4 59: 1614-1620.

The analytical solution of (4.7) is: fractional order differential equations by

(4.8) 9. Duan Junsheng, D., A. Jianye and X. Mingyu, 2007.

The numerical solutions for various values of  are by Adomian decomposition method. Appl. Math.
represented in Fig. 5. Chinese Univ. Ser. B, 22: 17-12.

CONCLUSION W.A. Wakeham, 2009. A fractional differential

We have presented a new method to solve fractional industry, J. Comput. Appl. Math, 229: 373-381.
boundary value problem. Also we have presented 11. Fix, G.J. and J.P. Roop, 2004. Least squares finite
convergent analysis for this method. The numerical element solution of a fractional order two-point
results obtained in this paper indicate that the suggested boundary value  problem.   Comput.   Math.  Appl.,
method maintains a considerable degree of high accuracy 48: 1017-1033.
which is promising in dealing with the solution of two 12. Galeone, L. and R.  Garrappa,  2008.  Fractional
point boundary value problem of fractional order. Adams-Moulton methods.  Math.  Comput.  Simul.,

REFERENCES 13. Garrappa, R., 2009. On some explicit Adams multistep

1. Agrawal, O.P. and P. Kumar, 2007. Comparison of five Comput. Appl. Math., 229: 392-399.
schemes for fractional differential equations. In: 14. Ghorbani, A., 2008. Toward a new analytical method
Sabatier, J., Advances in Fractional Calculus: for solving nonlinear fractional differential equations.
Theoretical Developments and Applications in Comput. Methods Appl. Mech. Eng., 197: 4173-4179.
Physics  and   Engineering,   Springer,   New  York, 15. Henrici, P., 1962. Discrete Variable Methods in
pp: 43-60. Ordinary Differential Equations. Wiley, New York.

2. Ahlberg, J.H., N.E. Nilson and J.L. Walsh, 1967. The 16. Jiang, C.X., J.E. Carletta and T.T. Hartley, 2007.
Theory of Splines and Their Applications. Academic Implementation of fractional order operators on field
Press, New York. programmable gate arrays. In: Sabatier, J., et al. (eds.)

3. Baleanu, D. and S.I. Muslih, 2007. On fractional Advances in Fractional Calculus: Theoretical
variational principles. In: Sabatier, J., et al. (eds.) Developments and Applications in Physics and
Advances in Fractional Calculus: Theoretical Engineering, Springer, New York, pp: 333-346.
Developments and Applications in Physics and 17.  Kaufmann, E.R. and E. Mboumi, 2008. Positive
Engineering,. Springer, New York, pp: 115-126. solution of a boundary value problem for a nonlinear

4. Benghorbal, M.M., 2004. Power series solutions of fractional differential equations. Electron. J. Qual.
fractional differential equations and symbolic Theory Differ. Equ., 3: 1-11.
derivatives and integrals. Ph.D. thesis, Faculty of 18. Kilbas, A.A., H.M. Srivastava and J.J. Trujillo, 2006.
Graduate studies, The University of Western Ontario, Theory of Application of Fractional Differential
London, Ontario. Equations, 1  edn. Belarus.

5. Bonilla, B., M. Rivero and J.J. Trujillo, 2007. Linear
differential equations of fractional order.In: Sabatier,
J., et al. (eds.) Advances in Fractional Calculus:
Theoretical Developments and Applications in
Physics  and   Engineering,   Springer,   New  York,
pp: 77-91.

6. Chen, W., H. Sun, X. Zhang and D. Korosak, 2010.
Anomalous diffusion modeling by fractal and
fractional derivatives. Comput. Math, 59: 1754-1758.

7. Chen, W. and L.H. Ye, 2010. Sun, Fractional diffusion

8. Diethelm, K. and G. Walz, 1997. Numerical solution of

extrapolation.Numer. Algorithms, 16: 231-253.

Solution of system of fractional differential equations

10. Fitt, A.D., A.R.H. Goodwin, K.A. Ronaldson  and

equation for a MEMS viscometer used in the oil

79: 1358-1367.

methods for fractional differential equations.J.

st



Middle-East J. Sci. Res., 23 (2): 293-300, 2015

300

19. Kosmatov, N., 2009. Integral equations and initial 27. Podlubny,  I.,   I.  Petras,  B.M.  Vinagre,   O’Leary
value problems for nonlinear differential. Nonlinear and P.L. Dorcak, 2002. Analogue realizations of
Anal, 70: 2521-2529. fractional-order     controllers.       Nonlinear     Dyn,

20. Lakshmikantham, V. and A.S. Vatsala, 2008. Basic 29: 281-296.
theory of fractional differential equations. Nonlinear 28. Ramadan, M.A., I.F. Lashien and W.K. Zahra, 2007.
Anal., 69: 2677-2682. Polynomial and nonpolynomial spline approaches to

21. Miller, K.S. and B. Ross, 1993. An Introduction to the the numerical solution of second order boundary
Fractional Calculus and Differential Equations.Wiley, value problems. Appl. Math. Comput., 184: 476-484.
New York. 29. Roop, J.P., 2004. Variational solution of the fractional

22. Momani, S. and Z. Odibat, 2007. Numerical advection dispersion equation. Ph.D. thesis, Clemson
comparison of methods for solving linear differential University, USA.
equations of fractional order. Chaos, Solitons 30. Sallam, S. and A.A. Karaballi, 1996. A quartic C3-
Fractals, 31: 1248-1255. spline collocation method for initial value problems.

23. Momania, S. and Z. Odibatb, 2008.A novel method J. Comput. Appl. Math., 75: 295-304.
for nonlinear fractional partial differential equations: 31. Su, X. and S. Zhang, 2009. Solution to boundary
combination of DTM and generalized Taylor’s value problem for nonlinear differential equations of
formula. J. Comput. Appl. Math, 220: 85-95. fractional order. Electr. J. Differ. Equ. 26: 1-15.

24. Nasuno, H., N. Shimizu and M. Fukunaga, 2007. 32. Taukenova, F.I. and M. Kh. Shkhanukov-Lafishev,
Fractional derivative consideration on nonlinear 2006. Difference methods for solving boundary value
viscoelastic statical and dynamical behavior under problems for fractional differential equations.
large pre-displacement. In: Sabatier, J., et al.(eds.) Comput.Math. Math. Phys., 46: 1785-1795.
Advances in Fractional Calculus: Theoretical 33. Tavazoei, M.S. and M. Haeri, 2009. A note on the
Developments and Applications in Physics and stability of fractional order systems. Math. Comput.
Engineering, Springer, New York, pp: 363-376. Simul, 79: 1566-1576.

25. Ouahab, A., 2008. Some results for fractional 34. Zahra, W.K. and S.M. Elkholy, 2012. Quadratic spline
boundary value problem of differential inclusions. solution for boundary value problem of fractional
Nonlinear Anal., 69: 3877-3896. order. Numer. Algorithms, 59: 373-391.

26. Podlubny, I., 1999. Fractional Differential Equation.
Academic, San Diego ()


