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Abstract: We consider in this study the problem of confusion between the nonstationarity and the long
memory. Many authors have pointed out, in empirical case, the existence of long memory in financial and
economics time series, through processes supposed short memory stationary [26, 28]. This existence has been
proved as being the consequence of nonstationarity, which is the non constancy of the unconditional variance
or the changes in the mean of the series. The objective of this article is to find a model likely to take into
account nonstationarity and long memory. 
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INTRODUCTION resultant series, besides nonstationary, presents a long

The phenomena of nonstationarity and long memory these values. So the questions that we ask ourselves are:
observed on the financial series, of the exchange rate for what type of long memory have we got? Have we got a
example, constitute a subject which draws the attention of long memory resulting from a nonstationarity: change in
several researchers, Lobato and Savin [1], Granger and the unconditional variance or in the average? Or is it
Hyung [2], Breidt and Hsu [3], Bisaglia and Gerolimetto [4] about the long memory which supposes that the events
etc.... In the statistical modeling of the financial series, we going back up of a distant past have an effect on the
often have difficulty in distinguishing what is a matter of dynamics of the series? In the sequel we shall suppose
the nonstationarity and what is a matter of the long only the first case. Indeed, with regard to this case Ding
memory. These two behaviors can be confidentially and al. [7] have concluded that the nonstationarity can be
connected. Studies showed the existence of dependence a plausible explanation of the presence of long memory in
long memory on the series submitted to structural series assumed stationaries.
changes. By consulting [1] several possible sources of In this work we are interested in a joint modeling of
presence of long memory, in financial series presenting the nonstationarity and the long memory observed
structural changes, were quoted: it is about the frequently in an empirical way on financial series (or their
nonstationarity, the aggregation of series, the seasonal transformation adequate) supposed stationaries with
component of long memory, the distortion in size, the short memory with structural changes. The object of this
non-existence of higher order moments. Among articles article is to look for the most adequate model to describe
that highlight such sources, we can particularly cited that the nonstationarity and the long memory at the same time.
of Breidt and Hsu [3] with the distortion in size, that of Because of path dependence of the conditional variances
Lamoureux and Lastrapes [5] with the nonstationarity (the conditional variance depends on the whole past
engendered by the changes of regime at the level of history of the state variables), maximum likelihood
unconditional volatility, that of Mikosch and Stãricã [6] estimation is infeasible. By enlarging the parameter space
which, by proceeding to a concatenation of samples, to include the state variables, Markov chain Monte Carlo
outcomes of various stationaries models, showed that the (MCMC) is feasible.

memory if we consider squares or absolute values of
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The article is organized as follows: the Section 2 concept of mixture which allows to make the data
introduce RS-ARFIMA-GARCH model. In this section, we asymptotically independent, see [13]. The last two
recall the notion of long memory and the definitions of definitions are however respectively little useful and very
ARFIMA model and of regime switching Markov model. In difficult to use in the practice. But the first two definitions
Section 3, we explain how the model can be estimated in resting on the covariance and on the spectral density are
the MCMC framework. Section 4 is devoted to the most used in the practice. So from these two tools, we
simulation study. In Section 5, we apply our approach to have the following definitions:
a long time series of returns of exchange rate of the US
Dollar (USD) towards the Euro (EURO). Definition 1: In the temporal domain, a stationary process

The Model: As it is henceforth widely allowed, the short function is not absolutely summable, that is
memory stationary processes with structural changes can
possess a long memory property. That is why, to work
with the unconditional volatility while considering the
long memory as of false nature, it is natural to use a
regime switching or jump model. But, if we work with the An example of such a process is given by the
structural changes in the variance and the long memory, fractional processes. The fractional process (X )  the
we can consider an approach which takes into account simplest is the one under the form
both phenomena, in the sense where we introduce the
long memory into type regime switching model to take
into account the slow decay of the sample autocorrelation
function as for example in the case of the absolute returns For 0 < d < 1 and a constant, c > 0, we show that
of the S&P500: the model RS-ARFIMA-GARCH for
example. (2)

Long Memory and ARFIMA Model: The processes with This equation with long memory are characterized by
long memory, appeared in the years 1895 from the an autocorrelation function decreasing in an hyperbolic
observations of the astronomer Newcomb then of the way towards zero.
chemist Student (1927), were initially reserved for very
specific domains (hydrology, turbulence). The Definition 2: In the frequency domain, a process (X )
applications of such models multiplied in the years 1990, possesses the long memory property if its spectral
under the influence of several pioneers works showing density f increases without limit when the frequency aims
the presence of the phenomena to long memory in the towards zero, i.e.
economic and financial series, for example on series of
exchange rate [8,9], on the asset prices quoted in stock
exchange [10], on the electricity spot price [11], on
London Stock Exchange index (FTSE) [12]. Let us Particularly, (X )  fractional process is said to have
consider a price process (X )  with autocorrelation long memory if 0 < d < ½ and verifiest t Z

function, noted , define, for all k, byX

(1)

where (.) is the autocovariance function associated to To take into account the presence of a long memory,X

the process X . In the literature several definitions of long we use the Autoregressive Fractionally Integratedt

memory exist, we can cite, in particular, the long memory Moving Average (ARFIMA) process which with the
in the covariance sense, the long memory in the sense of fractional Gaussian noise [14], are the examples the most
the spectral density, the long memory in the Allan often  evoked  by  long  memory  process.  The  ARFIMA
variance sense and the long memory which based on the (p, d, q) model is define by:

(X )  is said long memory process if its autocorrelationt t X

t t Z

t t Z

t t Z

(3)

where f( ) is the spectral density of the process (X )  att t Z

the frequency  and c' a positive constant.
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(4) (6)

where d is a fractional number, µ is the mean of the and
process (X ) ,  the polynomialst t z

 a n d

 have no common zeroes and

have their zeroes outside the unit circle. Here, the process
( ) , is a white noise with mean 0 and variance  and Bt t z

a backward shift operator Bx  = X . This model which wast t–1

proposed by [15] and [16] to model a behavior of
persistent long memory, is a generalization of the models
ARIMA of Box and Jenkins [17]. It allows taking into
account in a modeling at the same time the short-term
behavior through the autoregressive and the moving
average parameters and the long term behavior by means
of the parameter of fractional integration.

Regime Switching Markov Model: This model was
introduced into the literature by Hamilton in 1989 to take
into account the existence of structural changes not
visible to the naked eye in the studied financial and
economic series.

Let us consider a financial asset A; let X  be its pricet

model expressing as follows:

X  = m  + (5)t t t

where m  is the mean of the process and  a strong whitet t

noise.
Let us suppose   that  the  variable m   followst

several  behavior  over  the  period analyzed [0, T], we
thus obtain a change of state on the level of the asset
price.

Let us suppose that there are two regimes governed
by an economic variable, for example a regime of high
volatility and a regime of low volatility. Thus m  dependst

on the regime on which the process is. Let s  {1, 2} thet

economic variable, representing the regimes at time t. In
that case the average of the price is . The equation (5)

becomes,

where probably m  m  and where  is a Gaussian white0 1 t

noise of zero mean and finite  ( ) ) and where2

s  et  are independent for all t.t t

It often happens that the variable s  is not observablet

in practice. Consequently, the model (6) cannot be
estimated because the current regime s  depends on thet–1

previous regime  s .  To  remedy  this  situation,  we  uset

the probability of passage from a regime to the other one
(it is about a joint probability). The problem is completely
defined if the transition probabilities between the various
regimes are known. Let p be a probability associated to
the changes of state,

(7)

where P(s | s ) represent the probability to be in thet t–1

regime s  at time t conditionally to the previous regime. Lett

M be the transition matrix of the chain s  whicht

characterizes the variable , M is defined by:

So, we find Hamilton regime switching model (1989)
extended afterward to the Markov regime switching
model. In the sequel we suppose that p  = p , that is to11 22

say the regimes have  the  same  probability  to  occur.
The autocorrelation function of the Markov regime
switching process  (6)  decreases  exponentially fast
toward zero, identical to that of a GARCH ([18]). This
autocorrelation function was studied by [19] and is given
by:

 ,  h>0 (8)

where

 and 
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are the non conditional probabilities.

Regime Switching ARFIMA-GARCH Model: Let  be a white noise of mean 0 and conditional variance  define ast

following:

Let (B) and (B) the p  and q  degree autoregressive and moving average polynomials respectively with realth th

coefficients dependant to the chain s . A process (X )  is called regime switching fractional integrated Garch process,t t t z

noted , if the following equation is satisfied

(9)

where

)

and where

The long memory parameters d is fractional, B is the backward operator 
Probably m  m .0 1

s  and  are independents for all t.t t

The unconditional variance of every subperiod of the series is given by
 N: number of homogeneity intervals.

We remind that the variance  is conditional with regard to all the past of the noise  and the trajectory of thet

regime s  = (s ,s ,...) which is not observed, for  < t, that is to say the conditional variance is defined as follows:–1 –1 –2

 where

Notice that this model is a direct generalization of the ARFIMA model of Granger and Joyeux [15], it contains several
particular cases:

The model of constant mean and unconditional variance, which can be formalized as following:

X  = m + (10)t t

with

)
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when d = 0, p  = q  = 0 and p  = q  = 0.1 1 2 2

The regime switching Markov which is formalized in the following way:

X  = m  + (11)t st t

with

)

when d = 0, p  = q  = 0 and p  = q  = 0.1 1 2 2

The Markov-Garch(1,1) model, which we can call also regime switching GARCH (RS-GARCH(1,1)):

(12)

with

)

and the unconditional variance of every subperiod of the series given by  N: number of

regime or of homogeneity intervals, d = 0, p  = q  = 0 and p  = q  = 1.1 1 2 2

The regime switching-ARIMA model which is formalized as following:

(13)

where

)

 corresponding at unconditional variance of X , d an integer and p  = q  = 0.2
t 2 2

The regime switching ARFIMA model which is formalized as following:

(14)

where
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)

 corresponding at the unconditional variance of X , d a fractional number and p  = q  = 0.2
t 2 2

In the present paper, we focus our attention on time series models with p  = q  = 1 given by2 2

(15)

where

)

(16)

The short memory parameters found in (B) and (B) could be modeled as functions of s . Since these parameterst

only affect the short-run dynamics of the process and our main interest is to study the estimation of the long memory
parameters, thus we can set the short memory parameters to be zero, that's mean with p  = q  = 0 and we obtain1 1

(17)

The polynomial (1 – B)  admits the following development:d

where

with the function  define as following:

, for all real a > 0,

  for a < 0 (18)

According to Hosking (1981), one can easily show that

Under the condition of stationary: , it exists then a unique stationary solution to the equation (15) and in the

case of a fractionally integrated process ( (B) = (B) = 1), the process (X )  define by (17) can be written under its formt t z

moving average infinite form:
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(20)

Estimation
Identification of Intervals of Homogeneity: The estimation of the parameters being made on subperiods, it is beforehand
necessary to identify the intervals of homogeneity. For it we use the spectral test of Stãricã and Granger [20]. We
consider the following linear process

where ( )  is a sequence real number absolutely summable and ( )  a centered white noise with variance . To detectj j z t t z
2

the intervals of homogeneity, Stãricã and Granger proposes the following statistics:

where

represent the natural estimator of the spectral density f  of the process (X ) , with n,x his autocovariance function andx t t z

estimator of  variance of the noise ( ) .2
t t z

In the sequel, the linear process (21) with mean µ, noise variance  and spectral density f  will be compactly denoted2

by .

One assumes that the sample X ,...,X  generated by X , presents subsamples  different1 n t

which we suppose stationaries. The intervals of homogeneity on X ,...,X  are constructed as follows. Let us consider the1 n

subsample , assume that he is described by  a linear parametric model with mean µ, noise variance 2

and spectral density f . We want to decide if the interval of homogeneity containing the observations  to  can

be extend with p observations, , that is if p observations, , also belong to the interval.

To accomplish this, we use the statistical test  which consists to test if the linear model  fits well

to the subsample  that contains p new points of data (s, a number constant, is the size of the subsample

on which the test is conducted).

Estimation of Parameters of the Model: For the estimation, we use a Bayesian Markov chain Monte Carlo (MCMC)
methods that circumvents the problem of path dependence by including the state variables in the parameter space. This
method allows us to treat the latent state variables as parameters of the model and to construct the likelihood function
assuming we know the states. This technique is called data augmentation; see [21] and [22]. The properties of the
estimator compare favorably with other approaches. It is straightforward to obtain smoothed estimates of volatility from
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MCMC output. Here, we present the Bayesian algorithm for a RS-ARFIMA-GARCH model with the case of two regimes
and normality of the error term  and in Section 4, we illustrate that it recovers correctly the parameters of a simulatedt

data generating process.
We denote by X  the vector (x ,x ,...,x ) and likewise S  = (s ,s ,...,s ) with transition probabilities .t 1 2 t t 1 2 t

The model parameters consist of p = (p ,p ,p ,p ,), µ = (µ , µ ), d and = ( , , where  = ( , , ,) for k = 1, 2.11 21 12 22 1 2 1 2 k oi 1i oi

The conditional density of x  is the Gaussian densityt

The marginal density (or probability mass function) of s  is specified byt

Indeed, let us consider the realization X = (x ,x ,...,x ,), µ,  and the vector of states S = (x ,x ,...,x ,), the conditional1 2 n 1 2 n

density function of X , generator of the observations and the regimes, is given byt

where  is a function of  through s , defined by equation (16). This would be the likelihood function to maximize if thet

sates were known. Notice that it does not depend on p. Given p and X the distribution of S is given by

which does not depend on µ, d and .
The joint density of X and S given the parameters is then obtained by taking the product of the densities in (25) and

(26) over all observations:

To implement the MCMC algorithm, we implement a Gibbs sampling algorithm that allows us to sample from the full
conditional posterior densities of blocks of parameters given by, , µ, d, p and the elements of S. We explain what our
prior densities are for , µ, d and p when we define the different blocks of the Gibbs sampler. The steps in the MCMC
algorithm are as follows:

Sample s | S , µ, , p, d, Y Simulation Study: In this section, we make somet t

Sample | S, µ, p, d, Y simulations, on the one hand, to illustrate the behavior of
Sample | S, , p, d, Y the model and on the other hand, to make the estimation
Sample | S, µ, , p, Y of the parameters of the model. Because there is no known
Sample | S, µ, , d, Y technique for generating an exact RS-ARFIMA-GARCH,

Sample Goto 1: A pass through 1-5 provides a draw from the truncation moving average:
the posterior. We repeat this several 5000 times and
collect these draws after an initial burn-in period. For
detailed steps of the algorithm see [1, 2].

we will approximate the infinite moving average (19) by
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Fig. 4.1:  Trajectory of the simulated models.

where the non-random constants b  are defined by (14)k

and M is the truncation parameter. As in Gray and al. [19],
we fixe M = 29000.

First, we show that this RS-ARFIMA-GARCH
framework can also distinguish between the ARFIMA and
RS-GARCH DGPs. To verify that, we simulate two DGP
corresponding respectively to ARFIMA(0,d,0) with two
cases according to the parameter d: d = 0.2, d = 0.4 and
RS-GARCH(1,1) with parameters:  = 0.015,  = 0.12,01 11

= 0.025 and  = 0.065,  = 0.35,  = 0.18 and we fit11 02 12 12

both the simulated data into the RS-ARFIMA(0,d,0)-
GARCH(1,1) model. Secondly, to see how RS-ARFIMA-
GARCH framework performs when the DGP is composed
of both long memory and regime switching with GARCH
noise, we simulate a RS-ARFIMA-GARCH: (1 – B)(X  – m )t st

under the two following forms:

RS-ARFIMA(0,d,0)GARCH(1,1): with m  = –0.5, m0 1

= 0.5, d = 0.2 and with transition probabilities p  = p Estimation of parameters of simulated RS-ARFIMA11 22

= 0.99. (0,d,0)-GARCH(1,1) data fitted into
RS-FARIMA(0,d,0)GARCH(1,1): with m  = –2, m = RS-ARFIMA(0,d,0)-GARCH(1,1) model0 1

2, d = 0.4 and with transition probabilities p  = 0.98 Estimation of parameters of simulated RS-11

and p  = 0.99. ARFIMA(0,d,0)-GARCH(1,1) data fitted into22

Each simulated data set is then fitted into the original In Table 4.1, we find that the mean estimates of d are
RS-ARFIMA(0, d, 0)-GARCH(1,1) model. We plotted in close to true values for ARFIMA DGP and close to 0 for
Figs. 4.1 the trajectories of the process (X ) RS-ARFIMA- RS-GARCH DGP. In addition, for RS-GARCH, meant t z

GARCH when the GARCH coefficients are  = 0.015, estimates of all parameters, particularly of p  and p , are01 11

= 0.12,  = 0.025 and  = 0.065,  = 0.35,  = 0.18 for also close to their corresponding true values. Thus, we11 02 12 12

each of the two models. In these two graphs, we observe further argue that RS-ARFIMA-GARCH model can
that the underlying processes seem to be locally consistently identify the states of RS-GARCH. These
stationary as soon as we stay inside a regime but seem to results show that, the RS-ARFIMA-GARCH model can
be globally stationary if the means in absolute value distinguish between the pure ARFIMA and pure RS-
become small. GARCH DGPs and provide consistent estimates of

After the simulation of a series, X , coming from each parameters.t

of the models listed above, we make the estimations of the In Table 4.2, it can be seen that all estimated values
parameters by Markov Chain Monte Carlo (MCMC) of parameters from RS-ARFIMA-GARCH model, for each
methods. In Table 4.1 and Table 4.2, we report the regime, are quite close to the true values. As a result, it
estimations of the parameters for the models suggests that RS-ARFIMA-GARCH model is capable of
corresponding to the two DGP. identifying the states.

RS-ARFIMA(0,d,0)-GARCH(1,1) model 

11 22



Middle-East J. Sci. Res., 22 (2): 180-192, 2014

189

Fig. 5.1:  Evolution (top left), Trajectory (top middle) and ACF (top right).

Table 5.1-Descriptive statistics of exchange rate 
Characteristics USD/EURO
Taille 3965 3965
Moyenne 1.2205
Médiane 1.2719
Maximum 1.6010
Minimum 0.8270
Ecart type 0.1854
Skewness -0.4663
Kurtosis 2.2769
Jarque Bera 230.081

Table 5.2: Augmented Dickey-Fuller test on the logarithm of the parity.
Significance level

Lag order Statistic -----------------------------
Parity p of the test Prob 1% 5%
USD/EURO 6 -23.158 0.01 -3.9614 -34115

We also see that, RS-ARFIMA-GARCH framework
can further provide consistent estimate of long memory
parameter and can consistently identify the volatility
states.

Application on Real Data: For evaluate the capacity of our
RS-ARFIMA-GARCH framework to describe the data, we
compare it with RS-ARFIMA, RS-GARCH, standard
ARFIMA and standard Markov regime switching models.

Data:  The  data  of  exchange  rate  being  very  volatile,
we  choose  them  as our study. So, we are interested in
the  daily  series  of  exchange  rate  of the US Dollar
(USD)  towards  the  Euro  (EURO), from January 04th,
1999 to March 14th, 2014, daily frequency (5 days a week),
that  is a  trajectory  of  length T=3965. We note (X )t t z

this series which the graphic representation is given at
Figure 5.1. We then considered the logarithmic
transformation

logX  – logXt t–1

The studied series thus become the daily variations,
expressed in percentage. These data come from the FRED
database maintained by the Federal Reserve Bank of
Saint-Louis, available on-line on the site of the bank
(http://www.stls.frb.org/) in the section: Exchange rate,
balance of payments and trade data. The choice of this
exchange rate recovers from its status as world currency
and his role on foreign exchange market.

The presence of long memory in the series of
exchange rate, supposed stationaries, was shown in an
empirical way in [26]. Intervals of homogeneities were
identified on these series, what proves their nonstationary
character.
We present in the below Table 5.1 the characteristics of
the series.

It emerges from this table that the distribution of the
exchange rate USD/EURO does not seem to be normally
distributed, because the sign of Skewness statistic is
negative for this series and we see well also that the
Jarque-Bera statistic is widely superior to the critical value
of Chi-deux (5.991) at the 5% level of significance, what
brings us to believe that the distribution of our series is
non normal, what is a general characteristic of the
financial series.

Figure 5.1 presents on the left the evolution of the
daily exchange rate, on the middle the trajectory of the
daily returns of exchange rate and on the right the
autocorrelation function in absolute value of returns of
exchange rate. The left graph reveals the existence of an
increase trend for the parity, from 2002 until 2008 year of
financial and economic crisis, thus a priori a
nonstationarity of the series. Consequently, we need a
test to confirm or invalidate this behavior of
nonstationarity. We use for that purpose, Augmented
Dickey-Fuller (ADF) unit root.

The logarithm of USD/EURO parity is not stationary
in level and stationary in first differency, of this fact the
study will carry on the returns of USD/EURO parity.
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Table 5.3: Homogeneity intervals from 04/01/1999 -- 14/03/2014
USD/EUR0
Statistic T Intervals
0.829 04/01/1999 - 07/09/2001
0.515 09/02/2001 - 01/11/2002
0.469 05/04/2002 - 21/03/2003
0.514 23/08/2002 - 08/08/2003
0.441 10/01/2003 - 26/12/2003
0.515 30/05/2003 - 01/10/2004
0.297 05/03/2004 - 08/07/2005
0.304 10/12/2004 - 26/10/2007
0.623 30/03/2007 - 25/09/2009
0.323 27/02/2009 - 26/08/2011
0.291 10/09/2010 - 01/06/2012
0.301 17/06/2011 - 26/07/2013
0.421 10/08/2012 - 14/03/2014

The empirical autocorrelation function of the series,
right graph, decrease in a slow way towards positive
values, what constitutes an indicator of the presence of
long memory. This slow decay can be explained by the
second term of the relation (2.4) in [6].

Regime Change: Table 5.3 presents the results of the
identification test of intervals of homogeneity ([20]). On
the whole period considered, the studied series seems to
be more stable than over the last two years of our sample.
Indeed, we identify by means of the test several
significant jumps over the period of study, decomposing
so the whole period in several periods where the
unconditional variance seems to be constant.

We so identify the last interval of homogeneity from
10/08/2012 to 14/03/2014.

By putting p = 100 new points of data, s = 250 the size
of subsample on which the test is driven, m = 700 the size
of the first block, the statistical homogeneity test
practiced on the subsample  supplies a

value T = 0.829 widely upper to the critical value at the
risk = 5% what makes that the block X ,....,X  cannot1 7000

be extend to X ,....,X  So, from January, 1999, we found1 8000

the first interval of homogeneous data which corresponds
to a subsample of 700 data, what seems to be in agreement
with the regular depreciation of the Euro, as soon as its
introduction in 1999, compared with the Dollar until 2001.
A structural change thus occurred according to our
analysis between m = 700 and m = 800, what could
correspond to the end of the abnormal depreciation of the
Euro face to face of the Dollar between 2000 and 2001.
This change was short because immediately we were up
in the interval of homogeneity with the subsample
X ,....,X . But of m = 1000 data, what would correspond550 1000

with  the  end  of  2002  or  the  beginning   of   2003,  until

m = 1400 which corresponds to roughly at the beginning
of 2004, we detected many structural changes on the data.
From 2004, aside some two changes which occurred
between m = 1500 and m = 1600 and between m = 1700 and
m = 1800, we found data which are homogeneous for the
mostly; this situation of the data a little bit similar to that
of before 2002, could correspond on the contrary to the
appreciation of the Euro opposite of the Dollar. We notice
a change between m = 2300 and m=2400 what seems to
correspond to the completion, in the second quarter 2008,
of the bullish movement introduced to the second quarter
of 2002 with extreme points situated at 0.8230 and at
1.6030 approximately. Then comes a break between m =
2800 and m = 3000 situation which can be explained by the
fall of the Euro in the beginning summer 2010 reaching
1.1959 on 07/06/2010. Since then, we notice a certain form
of homogeneity to between m = 3400 and m = 3500 which
correspond respectively to the dates 12/01/2012 and
01/06/2012. This break between these two dates is
apparently connected to the resumption of the downward
trend of the series in May, 2012 reaching the minimal
value 1.2062 on 24/07/2012. With the resumption of the
upward trend, the series seems to be homogeneous since
07/09/2012. It thus seems that this series is really
informative as regards the detection of structural changes.

Estimation: Studying the performance on simulated data,
we verify the reliability of our model on the real data. In
Table 5.4, we report the parameters from the estimation of
different models using the estimation sample. The
estimated models include the two regimes RS-ARFIMA-
GARCH model defined by equations (15) and (17), the RS-
ARFIMA, the RS-GARCH, the standard ARFIMA and the
standard Markov regime switching. The estimated value
for d in ARFIMA model is 0.1808 and significantly greater
than 0, suggesting that the long memory is present. The
presence of a long memory in the series of exchange rate
is in agreement with the works of Booth, Kaen and
Koveos [27] detecting such a phenomenon by means of
the  analysis  R/S  or  still  those  of  Cheung  [8] using the
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