
Middle-East Journal of Scientific Research 22 (2): 241-254, 2014
ISSN 1990-9233
© IDOSI Publications, 2014
DOI: 10.5829/idosi.mejsr.2014.22.02.21852

Corresponding Author: M. Chinnadurai, Department of Information Technology, E.G.S. Pillay Engineering College,
 Nagapattinam, Tamilnadu, India.

241

High Level Synthesis Tools-an Overview from Model to Implementation

M. Chinnadurai and M. Joseph1 2

Department of Information Technology, 1

E.G.S. Pillay Engineering College, Nagapattinam, Tamilnadu, India
Department of Computer and Science Engineering, 2

St.Joseph's College of Engineering and Technology, Thanjavur, Tamilnadu. India

Abstract: The design community has to switch over from Register Transfer Level (RTL) to higher abstraction
level to design a digital circuit since the design complexity of digital circuits and System on Chip (SoC) are
swelling. This increasing complexity and recent advancement in on-chip circuit has paved the way for High
Level Synthesis (HLS) improvement (precisely for FPGA). The commercial HLS in earlier stage were
unsuccessful due to may reason, however the recent HLS tools are developed to support in various means,
such as, covering maximum language, modeling the design based on the platform, an enhancement in the
algorithm, targeting domain-specific and technology-based implementation. The approach to select the HLS
tool among the various tools available based on result quality (i.e. QoR), capabilities and usability are assessed
in this paper. The industries are accepting the HLS tools in their design flow since the tools are progressing
steadily.

Key words: Register Transfer Level (RTL) System on Chip (SoC) High Level Synthesis (HLS) Quality
of Result (QoR) FPGA

INTRODUCTION behavioural system to final RTL. This design flow is

The design abstraction with superior productivity by the place and Route. The verification needs at
than RTL is in need, as the hindrance in System on Chip various stages of the design as the tools and code
(SoC) increase rapidly. The semiconductor industry (RTL design) are developed by humans. The concentric
depends on ESL (Electronic System Level) design that has circles. This flow which has been followed for the past
been extensively recognized as a boost for superior yield. two decades requires the manual interpretation for the
High Level Synthesis (HLS) performs a core responsibility re-fine of the system from the discrepancies are removed
in ESL by automating the process of synthesis (high based on the result of verification. The challenge in the
level specification) to RTL (low level specification) for design flow increases nowadays, as single chip is loaded
proficient realization in FPGA or ASICs. The design flow with more number of functionality stated by Moore’s law
of High Level Synthesis (HLS) and Register Transfer [2]. This hard-hitting criterion led to the reduction in the
Level (RTL) can be realized using Gajski and Kuhn’s design yield. Since the overall functionality cannot be
Y-chart [1]. The geometry, behaviour and structure of the implemented by the humans. The automatic re-finement to
design are represented in three axes as shown in Figure 1. RTL from algorithmic level is employed by High Level
The five levels, namely; system, algorithmic, register Synthesis (HLS) to enhance the design productivity.
transfer, logical, circuit and are represented by the five In HLS, the transition becomes smaller between design
initial behavioural system to final RTL. This design flow flow (automated) and specification as shown in Figure 2.
is completed after the completion of RTL synthesis The programming language like Matlab, ‘C’ or ‘C++’ can
followed by the place and Route. The verification needs be used to write the functionality and inject as input
at various stages of the design as the tools and code to the HLS tool which in turn generates the RTL design.
(RTL design) are developed by humans. The initial The designer handover the number of tasks to HLS tool,

completed after the completion of RTL synthesis followed

Middle-East J. Sci. Res., 22 (2): 241-254, 2014

242

Fig. 1: Gasjki-kuhn Y-Chart for RTL Design Flow tools based on the Sobel edge detector is discussed in

Fig. 2: Gasjki-kuhn Y-Chart for HLS Design Flow embedded software possessed by automated flow of the

as the number of needed memory elements and the (SoC). Likewise, the programming for different boundaries
operator types (i.e. resource allocation) are determined of software and hardware is evaluated in-terms of power,
after the source code is analyzed. Scheduling is followed performance and area without any tradeoffs.
by resource allocation in which the time slot for source
code with various operations are allotted. Enhancing the Design Yield by reusing the Behavioral

The memory elements and operators are assigned IP: The reuse of behavioral IP in behavioral synthesis is
with data and operation (i.e. binding) from the source the added advantage apart from the reduction in line-
code. It also takes care of synthesis containing interfaces. count. This IP can be realized in different technologies
Many more sophistication can be made available by and re-targeted to diverse realization, whereas the IP in
employing HLS in the design flow. The oversight made by RTL have the constraints of fixed micro-architecture.
humans during the design and time is reduced initially by
reducing the number of lines of code. In addition, the Heterogeneous SoCs and Accelerator Development:
validation time (require more time than design time) is The processor with multi programmable ability has the
reduced as the test benches are generated by the tool constraints of power which is overcome by accelerators
itself. based on custom architectures. And nowadays this

The complexity in coding the hardware architecture accelerator was incorporated in many System on Chip
manually can be reduced to a large extent by touching the (SoC) and Chip Multi-Processor (CMPs). By 2024, the
feat of higher abstraction level. Also, it reduces the accelerators present on-chip will reach 3000 as predicted
complexity in the integrating number of functionality in a by ITRS [3].

single chip. The milestone of redefining the FPGA
prototyping and time to market are achieved by HLS.
In this paper, a survey on various HLS tool has been
made. Since the HLS is the sizzling research area, the tools
for HLS are developing day-to-day. The future dependant
of this paper should bear in mind that this assessment
was made on the tools that are currently available.

This paper provides a motivation to the developer of
the HLS tool, as it point out, both the shortcoming and
pros of the available HLS tools. The organization of this
paper is as follows, need for High Level Synthesis (HLS)
is briefed in section 2, section 3 explains the evolution of
High Level Synthesis (HLS) in various years, criteria to
examine the tools are detailed in section 4, the survey of

section 5, the tools assessment based on result and spider
web is furnished in section 6 followed by conclusion in
section 7.

Need for HLS: In 1990s, the HLS tool was declared
as failure model for various issues; the HLS with high-
quality and performance are in need for the following
reason.

SoC with Embedded Processor: The modern embedded
system involves number of software elements along with
custom logic and memories on a single chip, micro-
processor and digital signal processor. The C/C++
programming of the customized hardware logic and

HLS tool made them a perfect match for System on Chip

Middle-East J. Sci. Res., 22 (2): 241-254, 2014

243

The performance of the design is increased by using Inexpensive Formal Verification: The success in the first
custom architecture in FPGA whereas the degradation in tape-out is the vital problem for the ASIC designer.
performance was the result of using soft processor. From [3], over $1M is utilized to manufacture the IC in
Again, this custom logic is more suitable to High Level nanometer technologies. Till now mature HLS tools for
Synthesis. formal verification of ASIC are not evolved properly.

High Level of Abstraction Rises Due to Massive Silicon multi-million gates. On the other hand the simulation
Capacity: The improvement in design productivity and coverage for FPGA is possible with higher degree.
control over complexity is achieved by using design The manufacturing cost can be reduced o larger extent for
abstraction. As an example from NEC [4], RTL code with more number of design Iterations.
300K line is needed for 1M-gate design, which is hard
hitting for the manual designer. The reduction rate of Ultimate for Synthesis Based on Platform: The HLS tools
7X - 10X is achieved by utilizing the SystemC, ‘C’ or ‘C++’ can support a quality of result (QoR) and design
as a programming language for specification of high level methodology based on platform [7]. The above said
design. feature is possible because, the predefined IP like

The code complexity in the design is reduced by embedded processors, embedded memories, embedded
reducing the line of code to 30K - 40K with the help of system bus and arithmetic units are entrenched in the
high level synthesis[4]. modern FPGAs. In FPGA platform the modeling of the

Demand of System Level Verification: The system level design can be done efficiently. The research interest in
verification [5] is approached by the method of the field of HLS tools made themes available for various
Transaction–level modeling with a programming language application domains like image processing [8], data
called as System C [6]. The TLM based on System C is analysis in cosmology [9], application in aerospace [10]
commonly used by designers which facilitate the designer and wireless system (3G/4G) [11]. Also, Xilinx inc. featured
with verification based on functionality, development of their user by embedding the solution of HLS in their DSP
embedded software and finally the modeling of Development kit [12] and Video Development kit [13].
architecture. This would lead to the HLS solution based
on System C. In today’s industry the recoding of RTL Early Evolution HLS: In earlier stages, the HLS tools are
manually is replaced by RTL code generated automatically developed to target the ASIC rather than an FPGA.
by HLS tools. The seed was laid by the researchers at the University of

Reactive Time-to-Market: The inadequacy in full custom CMU-DA [14, 15]. This tool uses the Instruction Set
ASIC (i.e. long time for designing chips and Processor Specification (ISPS) language [16] to specify
manufacturing cycle) is overcome by the FPGA. Faster the design in behavioral level. The behavioral design is
time-to-market is achieved by the FPGA. converted to intermediate data called as value trace [17]

The tradeoffs in power, cost and performance is over- afterwards converting it to RTL design. Many techniques
rated by reducing the time to design. This choice of in code-transformation such as elimination redundant
tradeoffs between performance and design time is handed sub-expression, extraction of common sub-expression,
over to the designer in modern HLS tools. code motion, propagation of constant and elimination

Inefficiency of Verilog and VHDL: Application in High On the other hand, the features like controller generation,
Performance Computing (HPC) such as bioinformatics, allocation of the datapath, selection module and
video and image processing, scientific computing hierarchical design support were offered at the synthesis
application and financial analytics are made familiar with engine.
advancement in the reconfigurable computing of the These initial over-rated feature of the tool made the
FPGA. The application developer finds difficult in coding researchers turn quickly towards the tool of High Level
the HPC in VHDL or Verilog. On the other hand, the HLS Synthesis. As a result, the various high level synthesis
tools provide the feasibility of programming the tools were developed in the 1980s and 1990s for the
application using ‘C’, Matlab or ‘C++’. purpose of research. The attempt of academician has led

Moreover the verification is limited to SoC having

predefined logic is planned ahead, as a result of it the

Carnegie Mellon in 1970; they develop an HLS tool called

of dead-code made added advantages to the compiler.

Middle-East J. Sci. Res., 22 (2): 241-254, 2014

244

to the development of ADAM at Southern California drawbacks the tools like Olympus generate a sub-optimal
University [18, 19]. The interest carried-out at the result since the algorithms were made on the assumption
Bell-Northern Research has led to the development of (in earlier), moreover they did not depend on the
HAL [20]. The work at Kiel University, Germany invented technology (Technology-Independent). In the middle and
the tool called as MIMOLA [21]. Stanford University later part of 1990s, major semiconductor industries had
developed a tool called as Hebe/Hercules [22, 23] at their lend hand to make HLS tools practically possible one.
university research lab. In similar, the Hyper-LP/Hyper The tools were developed by Motorola [34], Siemens [35],
tool [24, 25] was developed at California University, IBM [36] and Philips [37]. This triggering point also made
Berkeley. In contrast to this, the effort from the industry several EDA vendors turn to HLS tool. In [38], the RTL
developed the tools such as IMEC [26] with their implementation was generated from behavioral code by
predecessor Cathedral/Cathedral II, a GM BSSC system the Behavioral Compiler introduced by Synopsys in 1995.
[27] and silicon compiler [28] for IBM. Likewise, in The competitor also developed the tool called as a
CMU-DA, these tools also support the code- Cadence Visual Architect [39] and Mentor Graphic’s
transformation and synthesis engine feature like ‘Monet’ [40]. Although the EDA vendors and
generation of controller, resource binding, scheduling and semiconductor industries developed the HLS tools, these
allocation of the datapath. Apart from this, the problems tools did not have enough stuff to restore the RTL tools,
are addressed individually in various tools, such as, the since the design based on the behavioral model
performance of the Silicon compiler was optimized by programming are not popular among the application
scheduling algorithm based on the path as well as developers and the designers.
conditional branches [29].

The HAL tool with force directed scheduling HLS Evolution after 2000: The next generations of
algorithm is implemented in [30] has control over the high-level synthesis tools were developed in 2000 by both
requirements of resources. The pipelined realization [31] industry and academia. The design was made possible
of the design is possible by utilizing the ADAM’s Schwa with many tools by using the programming language like
tools. The sharing of resources in the datapath is made C/C++. The application developer and system designer
possible with the techniques of conflict graph coloring are more convenient with tools, operating with ‘C’ like
techniques which are incorporated into many systems. languages rather than HDL languages previously used.
The unbounded delay [32] can be handled using the The vital character of synthesis tools such as optimization
relative scheduling algorithm which is implemented in and parallelization are made easy for the designer, using
HEBE tool. The custom languages are used to develop the the software compiler made by ‘C’- like programming
design in the early stage of high level synthesis, like the languages. However, the programming language like ‘C’
ISPS language engaged in CMD-DA. Other than this, the has the shortcomings that it will suitable only for the
Hercules system uses the HardwareC [33] to design the microprocessor that runs on sequential software. Indeed
model. This language is based on ‘C’ programming and [41],[42], explains the ongoing contest of choosing the ‘C’
supports various features such as interface specification, or HDL language for HLS. The contesters mainly focus on
declarative and procedural semantics and design the HDL language, since the ‘C’ language has following
constraints. The synthesis of hardware based on DSP constraints such as specification of concurrency, timing,
[26], uniquely performed in Silage language is synchronization and accuracy of bits, which is decisive to
incorporated in Cathedral/Cathedral II. The Silage will hardware design. Other than this, the language
support the easy transformation and customized data construction is complex since it involves polymorphism,
types [24, 25]. The way to domain specific approach is led pointers, recursion and managing the memory
by combining the Cathedral-II along with Silage dynamically, which would lead to the synthesis
Language. Many innovations were evolved as a result complication. The constraints of ‘C’ language are
of earlier research based on the algorithmic synthesis. overcome in modern HLS tool with extended ‘C’ language,
The production of the real chip based on these research such as SpecC [43], HardwareC [33] and Handel-C [44].
are also possible but not in large. The reason behind this These languages make the tools, feasible to the user to
is that the RTL synthesis tool was not mature among the specify the compiler directives and libraries free from
designer at that time. This lead to the failure of the HLS timing, concurrency and other constraints. The two major
erect over the RTL synthesis. In addition to these advantages of these types of approach is that, the C/C++

Middle-East J. Sci. Res., 22 (2): 241-254, 2014

245

compiler is enough to compile the input without change attention need in the issues related to interfacing (i.e. the
in the compiler and the co-verification/co-design of the other hardware/software module interface should be
software and hardware are not in need of re-writing the feasible). In similar, the integration platform should be
code. Dissimilar to the design based on ’C’ as input, the configurable across boundaries for ease of
other tools which accept the inputs other than the ‘C’ implementations. By doing this, the vital bottleneck of
languages are as follows Matlab [45], BlueSpec [46] and system integration can be overcome.
Esterel [47]. And in nowadays, the HLS tools are varies
from their ancestor. Since, the HLS tools are developed by Documentation and Complexity in Tool: The tools should
keeping the target platform of FPGA in mind. have clear documents, so that the beginners can use the

The reconfiguration and re-programming feature of tools easily, the documents should not only fulfil the
the FPGA made them a striking candidate for many initial need of the user, but also able to fine-tune and
application likes video and image processing, signal re-write the source code. The tools should posses the
processing, communication and in HPC. So the modern approach of flat learning curve for wide acceptance
HLS tools are developed to target the FPGA, such as, among the designer/application developer. The tools
Impulse C [48], Streams-C compiler [49], SPARK [50], should provide the complex interfacing of hardware for
Trident [51], Nallatech developed DIME-C [52], Altera the expert; at the same time it should be as easy as
developed C2H [53], CASH [54], ASC [55], GAUT [56], possible for the designer with less experience.
Mentor Graphics developed Handel-C [44] and ROCCC
[57]. For example, the floating point in the FPGA can be Portability and Reusability of the Design Need Attention:
effectively realized using Trident compiler. Many HLS tools keep the designer busy by re-tuning or

The applications based on Digital Signal Processing modifying the source code based on information of the
(DSP) are implemented effectively using tools such as interface, timing constraints and synthesis constraints.
ASC, Streams-C, ROCCC, Impulse C and GAUT. Finally, This led to the bottleneck of specifying design
the pplication that has resources constraint (i.e. need of functionality. Since the functionality became highly
optimized hardware) can utilize the work of Technoloy dependent on the target-platform, application, tool and
Driven High Level Synthesis (THLS) [58]. As of 2012, the implementation, the porting of the design for varying
HLS tools based on ‘C’ language and also the other platform is complex.
language are as follows NEC’s Cyber Workbench [59],
Catapult C [60] developed by Mentor Graphics, Icarus Platform to Sustain Different Data Types: The
Verilog [61], C-to-Silicon compiler [62] developed by instruction processor support two common data types in
Cadence, Synphony C [63] developed by Synopsys, software, namely, integer and float, whereas in hardware
Autopilot [64] from AutoESL’s. the single bit is the only data type. The most complex data

Tools Assessment Criteria Based on Lesson Learned: The freedom to vary this number of bits is given to the
The various HLS tools based on many constraints such hardware designer. Hence the HLS tool is more optimize
as scheduling algorithm, technology, programming to the designer, if the tool supports the designer with
language, code re-writing, dead-lock avoidance, power, various data types. The implementation of various data-
performance, application, target FPGA, parallel types should be made possible at the source code level.
processing, pipeline methodology, design optimization,
Hardware and Software co-design/co-verification, silicon Deficient in Support of Design Language: High-level
capacity, number of code lines etc., have been surveyed programming language was not supported by the HLS
to the best of author knowledge till now, the remaining tools developed initially. Hence the partially/un timed
work will point out the needs and criteria for the behavioral model is used to specify the functionality of
assessment /evaluation of the HLS tools based on the the design. This made the learning curve complex for both
lesson learned. The diverse criteria for the HLS tools is as the hardware and software developers. In the next
follows, generation of HLS tools the language support was

Consideration on Synthesis Based on Datapath: Even Matlab, but the ‘C’ language has the drawback of
though the many works has been contributed towards the sequential processing, concurrency, polymorphisms,
HLS tool based on datapath synthesis, there are some pointers and dynamic allocation of memory. Although the

type supported by RTL synthesis tools is an integer.

extended to programming languages such as ‘C’/’C++’ or

Middle-East J. Sci. Res., 22 (2): 241-254, 2014

246

HLS tools with other programming languages are evolved achieved at this time and also at the final design cannot
the tool selection should be made by examining the be predicted. In similar, the size in terms of FPGA (logic
extended support of programming languages. elements) and ASIC (sq.mm) cannot be determined

Need for Verification along with the Design: The resources, size and overall latency of the design after
verification complexity increases as the functional block synthesis.
in the design increases. In other words, the verification
time is more than that of design time. The HLS tools Suggested Reason by the Designer: The first generation
provide much advantage for the verification engineer, but of the HLS tools is not familiar with the design community
the only need is the interface should be maintained because the complexity in RTL synthesis is manageable
properly throughout the design. This is would help the in the late 1990s. And in the second generation, the HLS
tools to generate the testbench along with the design. tools produce even more performance improvement than
The speed of verification is increased by generating the the first generation, but the researchers were panic to
design and testbench in parallel. Further the testbench adopt new technology rather than the known RTL
used to validate the design can be reused for source code technology. Hence, the designer needs some vital
also. The HLS tools can be suggested if it provides the “tripping-point “or some promising reason for the
feature of integrating the design and source code under technology revolution (i.e. to accept/adopt an HLS design
one testbench. methodology). Along with this the following are some

Quality of Result Not Satisfies the Designer: The generation,
degradation in the QoR in HLS tools evolved during the
1990s and after a decade is mainly due to the lack of The design accuracy is checked in terms of bit and
correlation between physical design and functional logic. algorithm (based on ‘C’ code). The algorithm
Also the HLS tools lack the enhancement, measure and specialists should be easily able to read the source
track since there is no platform for RTL to GDS II support code.
for HLS. For instance, the latency and functional unit The implementation of the parallelizable algorithm is
count can be reduced by the common algorithm, but made possible by modifying the ‘C’ code to a smaller
when it comes to real time the correlations deviate extent.
from the power, area of silicon and performances. The generated design should compete with the RTL
And so the designer are not willing gain in design implementation where the verification is done after
productivity without accomplishing the Quality of Result the manual and automatic optimization.
(QoR). The re-modifying/restoring of the source code is

Design and Tool Correctness: The design generated by design. Further the designer should have the
the tool was correct is the major claim of some vendors of feasibility of performing the optimized-design
HLS. The correctness of the tool plays a vital role in the process.
correctness of the design. The correctness of the tools
should also be considered based on the validation of the The constraints and the proceeding of the HLS tools
design. In precise, if the tool is correct the generated are discussed by both the academicians and industry
design will be correct and if the design is correct the peoples and we believe that HLS tools are evolving
design will pass the verification and again concludes that effectively and rapidly now (i.e. the “tripping-point”).
the tools is correct. Hence the designer should adopt the From our previous discussion and conclusion from
correctness criteria for the tool selection. [65, 66], we are eager and delight to see the latest

Design Considerations after Synthesis: The expects from the tools are HLS algorithm based on core,
consideration of the design after synthesis depends coverage of wide language, modeling based on platform,
mainly on the factor such as latency, size and resource technology independent. In the next section, the
usage. The scheduling algorithm provides latency in application base tools survey is made and the results are
terms of the clock cycle which is fixed. The clock rate furnished in terms of the spider web diagram.

accurately. Hence the tools are selected based on the

valuable points to design the HLS tools for future

made possible for the implementation process of the

generation of high level synthesis tools. And the feature

Middle-East J. Sci. Res., 22 (2): 241-254, 2014

247

Fig. 3: Algorithm for Sobel Edge detector

Fig. 4: Spider Web the architecture is the first step of synthesis in this tool,

HLS Tools Survey Based on Test Application: As The behaviour of the tool varies from datapath and
mentioned earlier, the HLS tools available as of 2012 are control; loop unrolling is used to evaluate the datapath
surveyed based on test application. The application and FSM will take care of the control over the loop.
should be trivial, but at the same time, the implementation The binding and scheduling algorithm is determined
effort should be reduced. Here, Sobel edge detector [67] based on the user constraints.
is a perfect candidate to match the balance. The Sobel The experience reveals that only minimal modification
edge detector is an image processing algorithm, where the efforts are in need to generate the RTL. 43 lines of code
pseudo code is shown in Figure 3. The edges in the are utilized from the reference design. The resultant VHDL
bitmap image are detected with the help of the Sobel edge code has the total of 2100 lines. The readability of the
detector algorithm by determining the vertical and code over-rides the comprehensibility of the generated
horizontal color gradient of each pixel in 3x3 windows. code. The function and loops are provided with pipeline
The generated image has the white border pixel. The proficiency which enables the code concurrency also the
output image with darker pixel and input with sharper tools provide different types of interface (with/without
transition will be the result of higher values. Even though handshake). The exploration of the design is possible by
the algorithm is simple, the HLS tools can be effectively the process of loop unrolling. And at last, the generation
examined by this algorithm. of design report reveals the information on latency,

And the iteration of the two loops is free from data resource estimation and total clock periods. The tool will
dependencies. As a result, the (any number) execution of generate a wrapper automatically, which is used to
the iteration in the algorithm is possible. The test communicate between C- testbench and generated RTL
application in various HLS tools is evaluated based on the design. This enables the reuse of testbench written in ‘C’

criteria such as verification, area, level of abstraction,
documentation, exploration, learning curve, data types
and implementation complexity. This evaluation is
presented in graphical view with the help of spider web as
shown in Figure 4.

The ability of the design implementation of the tools
is present in top-right, the QoR in terms of area is shown
at bottom-left of the spider web, the experience of the user
in HLS tools is shown in top-left axes of spider web finally
the capability of the tools are shown in the bottom-right
of the spider web. From the experience and knowledge as
of now, we are conscious that many HLS tools are
available, but to reduce the complexity, the tools are
selected on account of software license available.

The tool quality will increase, as the distance
between the spider web and outer axis decreases.

Autopilot: The Xilinx acquired the Autopilot recently
which was developed by AUTOESL. The HDL developed
from the various input languages (C-based) can be
compiled by Autopilot. The RTL design generation did
not need greater effort to modify the source code.
The tools can support optimal in terms of latency, power
and area. The tool is renamed as Vivado ESL after the
incorporation of the tool by Xilinx.

Arbitrary precision data type’s conversion should be
made for each data types. Then the design should perform
the interface and algorithm synthesis. The exploration of

followed by the interface and actual implementations.

Middle-East J. Sci. Res., 22 (2): 241-254, 2014

248

code for simulation and verification. The verification time OSCI SystemC are the support given completely by the
of the RTL simulation is reduced to a large extent by using agility compiler. This compiler support automatic code-
the ‘C’-based test bench. generation for FPGA from different vendors such as

Synphony C Compiler: The PICO tool was developed by in this tool is that the sensitivity list and
Synfora and Synopsys inc. acquires the Synfora in 2010. hardware process should be written by the user manually.
Having this platform Synopsys developed the HLS tool, The description of the hardware can be made by
namely Synphony C Complier. The C++ and ANSI C transaction level modeling which is the vital advantage
programming language are supported by the tool. over the other HDL entry. The approach behind this
The generated architecture based the specific architecture tool is to form a channel by separating the
is known as Pipeline of Processing Arrays (PPA). TCAB communication between modules implementation and
(Tightly Coupled Accelerator Blocks) is individually modules. The module’s interface function will handle the
compiled which is present in PPA. The wide range of process of transactions. The function will handle the
programming language constructs such as C++ and C are details of data exchange at low level. Another major
accepted by the Synphony C Compiler. Hence the drawback is the automatic generation of testbench is not
implementation and developing the code for the Sobel available. The testbench should be manually developed
edge detector is simple and moreover the manual guide using the SystemC.
you to develop the code easily. Pragmas are added in the
source code so that the designers are available with more The possible feature is provided by the tool during
optimization options. Further, the GUI is used to have the synthesis process is re-timing, code-modification,
exclude features like latency constraints, clock-rate and automatic tree-balancing and fine grained logic sharing.
target-library. The tool can support and generate interface The tool uses the event-driven kernel along with C++
based on streaming and memory. Effective design is not class library for simulation. The IP which already exists in
possible by using the default options. The design in black box can be called by the feature of additional
symphony leads to additional output/input buffer as hardware present additionally. The synthesis optimization
result huge area is consumed; later it is overcome by and area estimation after each step is generated by
setting the correct options. extensive XML. The automatic creation of control graph

The feasibility of automatic verification is provided and data flow graph are then extended by the tools.
by the Synphony, the verification is carried out in The use of channels is the critical advantage of the tools
different level, namely, after scheduling, after as far as our experience. And the operator overloading of
preprocessing, source-code, after synthesis and on the C++ language can be used precisely by the user at
overall generated design. The HDL simulator from other expert level and conclude this tool as it is best suited for
vendors can also be called from the tool. The golden the application where the description of the hardware is at
reference is used to cross check the simulation result. low level.
The result is stored in the form of text and also be
compared with the other testbench. The output bitmap of Impulse CoDeveloper: Impulse accelerated
the Sobel edge detector can be verified by this method technologies developed this tool (Impulse CoDeveloper)
also. There is possibility of interactive simulation which generate the RTL based on ‘C’ programming.
while the default simulation running in the background. The supported FPGA platforms are Pico, Nallatech, Xilinx
The RTL synthesis script was generated by Synphony C and Altera. The applications based on data-flow are
compiler and after the synthesis of RTL; the competition supported by Impulse CoDeveloper. The availability of
tool finds average results in terms of area. documentation is more and it is easy for the beginner.

Agility Compiler: Agility Design Solutions (ADS) are the two ways the tool can facilitate the designer.
developed an HLS tool called as Agility compiler. The hardware accelerators can be produced by Processor
The ADS were formed in Jan ’2008 as the Catalytic joined Accelerators that can further connect to embed FPGA
hands with Celoxica. The product of SystemC and Handel- processor. On the other hand, RTL module that can be
C are maintained by Mentor Graphics after it acquires the created by module generation, then it can be embed with
ADS in Jan ’2009. SystemC is synthesized by the agility various IP to form a huge application. ANSI C is extended
compiler effectively. The agility hardware support and to form an ImpulseC and this language is not more

Altera, Xilinx and Actel (now Microsemi). The constraint

Processor Acceleration and Module generation

Middle-East J. Sci. Res., 22 (2): 241-254, 2014

249

complex in forming the design (algorithmic and behavioral Exclusive verification should be made using the
level). Hence this tool needs minor changes in the Cadence IUS simulator. Cycle-by-Cycle basis
original ‘C-code’ to implement the Sobel Edge Detector. comparison is made between the reference and generated
CSP (Communication Sequential Processor) is the tool output. This statement proves that, the number of clock-
depend for the programming model. The tool lacks the cycle modified in scheduling process or generating a
customized in-build IP, however the readability of the design based on source code (untimed) cannot be verified
code is high. Shared-memories, register, streams and automatically.
signals are used for communication among the process.
The tool support various bus-interface and the interface DK Design Suite: Mentor Graphics acquired DK Design
between the embedded processor and the targeted FPGA Suite in 2009. The sign is made on the basis that DK
is established by including several libraries. The design customer will be supported by Mentor Graphics till the
optimization of the tool is as follows, the parallelism Catapult-C transition occurs. Then the major feature
can be monitored by using the Stage Master Explorer. enhancement is made by Mentor Graphics and intimated
The stream visualization is made possible by Application in websites. The interface definition is made available in
Monitor. The pipeline graph is used to find the delay in the language that is a subset of ‘C’ language and
optimal-stage and pipelines are observed by data-flow Catapult-C is one among them. This tool uses the
graph. The Impulse CoDeveloper includes various tools Catapult-C for many extended advantages. Apart from
for the process of verification, debugging and simulation. this, Catapult-C can support interfacing such as memories
The prototype is compiled and validated by Desktop and FIFO and can handle parallelism and precision data
Simulation Model and also the ModelSim is interfaced types. The competitive construct of the language
with the tool. The inclusion of cycle-based hardware consume the designer time by specifying the parallelism
simulator and Stage Maser Debugger depends on the explicitly. This process makes the job of the designer
license. The synthesis result reveals that the code-line is (even experienced) to develop the code for Sobel edge
increased due to the inclusion of interface and as a result detector a complicated one. The GUI of DK can handle
there is degradation in readability of the code. easily and it is straightforward. The changes can be

C-to-Silicon: The cadence developed a recent HLS tool, this interface can be made available from the command
namely, C-to-Silicon. The SystemC is used as a design line. The learning curve is simple, since the manual and
language in this tool. The SystemC wrapper will be online supports for documentation are ease of access.
generated by the CtoS tool, if the design code was written This tool is developed vitally to support the FPGA
in TLM 10, ‘C’ or C++. This tool cannot support the OSCI platform and hence the source code is modified to pin
SystemC standard since the SystemC based wrapper was mapping and component selection. The demerits of the
generated by CtoS. This tool is mainly developed by tool arise here since it cannot import to different
targeting the ASIC design. And to target the FPGA flow, platforms. Exploration of the design is simple by
this tool should turn off some optimization techniques. modifying the source-code in terms of macros, parallelism,
The writing and implementing the source code for the nested loops. The simulation is needed to carry out the
Sobel edge detector is easy, since the C++ and ANSI C is verification of the modified optimization.
accepted by CtoS. The documentation as well starting the The verification of the source code is done by the
C-to-S GUI is somewhat difficult. Default settings are source level simulator present in GUI. The interface is
often missing make the user un-comfortable and moreover used to write or read from the simulators. The verification
the non availability of the documentation support made of the generated design is harder since the porting of
the tool curve very complex or steep. The SystemC data data-port from DK is difficult. In addition the automatic
types support fixed point and bit width data types. testbench generation is not available. The behavioral
The users are facilitated with memory mapping and loop Verilog or VHDL design is generated by DK design suite.
optimization based on many constraints. The exploration Finally a lot of manual efforts are needed to fine-tune the
of the design has been too complex since the option avail throughput and latency.
by the tool the user is hard-hitting. By using the RTL
synthesis tool, the CtoS create the technology library Icarus Verilog: Stephen Williams developed the Icarus
while the design is in process. The RTL model generated Verilog which is open source. It uses the Verilog to
along with verification wrapper is cycle-accurate. develop the source code for the design. The developed

determined by looking into software IDE. In alternate to

Middle-East J. Sci. Res., 22 (2): 241-254, 2014

250

design can be targeted to FPGA and modifying the source counterpart of VVP assembly code in Icarus Verilog.
code is possible. Icarus Verilog V 0.8 supports the Although the documentation support is not feasible for
synthesis and the release after this version (i.e. V0.9) is the user, the tool developer provides lots of online
only intended for simulation process. There are many support. The software engineers are still working on the
reasons for the halt of synthesis in the newer version, tool to support both the simulation and synthesis for the
since the advance feature in V 0.9 has modified the source targeted FPGA. The development area varies as
code of the synthesis leading to the obstruction of the maintaining the perfect parallelism, validation accuracy,
synthesis process. Apart from that the existing FPGA application-driven interrupt, large design space
vendors provides the synthesis tools that are more exploration documentation support [66].
efficient than the Icarus Verilog. In addition the V 0.8
facilitates the synthesis process with some limitations Xilinx AccelDSP: AccelChip DSP technology develops
[65]. the HLS tool, namely, AccelDSP. Later in 2006, Xilinx inc.

On the other hand, Verilog Virtual Processor (VVP) acquired the AccelChip DSP technology. Matlab
and the IVerilog compiler are the vital part of the Icarus description is used in AccelDSP and works on own GUI.
Verilog. This tool will generate an intermediate code for The code should be developed explicitly by the designer
the design called as VVP assembly code which will act as for streaming function, since the tool is available only
bridge between IVerilog compiler and VVP. The verilog with streaming function. Signal and image processing
code, developed for the Sobel edge detector is translated application can be targeted in this tool. The tool support
into VVP assembly code by the IVerilog compiler (also a only the limited part of the standard M-code. The basic
translator). The interrupt based on the events are building blocks are instantiated and Matlab-code should
supported by the VVP simulator. The event can be be scanned to generate the HDL-code automatically.
processed by the VVP simulator by interrupting the VVP The Golden reference model is used by the designer to
assembly code.The verilog language is used to develop write the floating point operation. The design of Sobel
the design inspite of ‘C’-programming language, since the edge detector is made easy by using the M-code.
restriction in ‘C’ is overcome by using the modules to There is no need for manual conversion from fixed point
specify the design or applications. Moreover, the to floating point or vice versa, since the bit-width is
simulations with hierarchical module are not appropriate estimated dynamically. 53-bit is assigned to the fixed
and produce far-optimal results. The five phases that are point and the extension is should be reported to the
narrowing down by the IVerilog compiler is as follows toolbox. The over-flow in the operation needs some
Preprocessor, Parser, Elaboration, Optimizer, Code manual interpretation, which is exposed by our
generator.The define-directive’s macro substitution and experiments. The design exploration in AccelDSP is more
include directive’s file inclusion process is performed by when compared to a Xilinx system generator. The possible
the preprocessor. The internal representation of the supports available are memory mapping, matrix and loop
source file is generated by parser block, followed by the manipulation unrolling and pipelining. The Sobel edge
syntax and semantics checking. The elaboration phase filter is used to test the AccelDSP design exploration.
will generate flattened netlist based on hierarchy, before 61MHz clock speed is needed initially and 158 MHz clock
the generation the module instantiation is expanded and speed is achieved with a 4% increase in the resource
root module is located. The efficiency of the simulation is when the pipeline option is enabled. The feature of fixed
improved in the optimization stage by transforming the point probes is provided by AccelDSP, the internal signal
internal netlist. The entire design information is can be plotted at a specific time by inserting the command
accumulated in netlist optimized internally and the code is line manually. The testbench can be generated
generated in the form of VVP assembly code. The VVP automatically, so that the validation complexity of the
simulator will act as interpreter for the design generated design is reduced. The design can be targeted to FPGA
(VVP assembly code). The VVP assembly codes are by FIL (FPGA-in-loop) simulation. The three types of
parsed by VVP simulator and expose the structural part of generation available after the design process are creating
the netlist. Then, various inputs from the testbench are the Xilinx system generator block, simulation and
inserted into the design to check the functionality. generating the RTL-code. The handshake-interface is
In JAVA the compiler and interpreter are separated, used to communicate between the generate RTL-code to
likewise the Icarus Verilog separates the VVP simulator other process. The Synchronous control signal is used by
and IVerilog compiler. The byte-code in JAVA is the the module to produce and request data. The tool

Documentation

Learning Curve

Documentation

Learning Curve

Documentation

Learning Curve

Documentation

Learning Curve

Documentation

Learning Curve

Documentation

Learning Curve

Documentation

Learning Curve

Documentation

Learning Curve

Autopilot Synphony C Compiler Agility Compiler

Impulse CoDeveloper DK Design Suite

Icarus Verilog

Middle-East J. Sci. Res., 22 (2): 241-254, 2014

251

Fig. 5: Graphical Diagram (Spider Web) for Tools in Section

provides a powerful support limiting to applications based RTL design.The various commercial HLS tools are
on the streaming data. The streaming loop need modified presented. The Table 1 shows the various vital-
Matlab-code. The direction from the designer is still characteristic of the tools and the graphical view of the
needed apart from the conversion of fixed point same data is represented using the spider web (Figure 5).
automatically. Generation of the Xilinx system generator The tools quality is better, if the formed spider-web is
block is added feature along with RTL generation [67]. closer to the outside circle. As per our knowledge and

Evaluation of the Tools: To develop the good HLS tools However, the result and evaluation presented in spider
several features should be incorporated as per the web and Table 1 is a subject always under debate. And
designer needs. The source language should support the this survey result gives a preference for the designer
following features such as cycle-accurate and untimed to start-up with the HLS tools in a more precise manner.
abstraction level for control application and data-flow The scoring value varies from 1-5, the exploration of the
respectively. The learning curve for creating the design design need little modification if the value is 5 and more
and using the tool should be flat. In similar, the extension modification is expected if the value is 1. In similar, the
of the design and exploring the design need smaller area consumed by the design is less if it is 5 and varies
modification. The tool should support the interfacing with down to 1. Developing the design and modifying the
RTL synthesis and verification. In addition the design source code is easy, if the learning curve is flattened
quality should meet at least the near optimal QoR of the (i.e.5). The implementation complexity is increased if

experience we have scored the tools with different criteria.

Middle-East J. Sci. Res., 22 (2): 241-254, 2014

252

Table 1: Review of HLS Tool

Tools/Features Autopilot Synphony C Compiler Agility Compiler Impulse CoDeveloper C-to-Silicon DK Design Suite Icarus Verilog Xilinx AccelDSP
Source C, C++, SystemC C,C++ SystemC ImpulseC C, SystemC HandelC Verilog Matlab
Floating/FixedPoint Fixed point Fixed point Fixed point Fixed point Fixed point Fixed point Floating point Auto conversion
Abstraction Level Untimed & Cycle Untimed Cycle accurate Cycle & Untimed Cycle & Untimed Cycle accurate Cycle & Untimed Untimed

Testbench generation Y Y N N Y N N Y
Design Exploration 5 3 3 3 2 2 4 4
Implementation 5 5 4 2 4 3 5 5
Documentation 5 4 4 1 4 3 4 9
Learning Curve 5 4 2 3 1 2 5 5
Verification 5 5 1 1 4 3 3 4
FPGA Slices 232 1047 107 4611 1776 311 1312 2411

the value is at 1. Likewise, the feasibility and complexity REFERENCES
vary for different features based on the value scored.
To analyze the result, we have implemented the design in 1. Gajski, D.D. and R.H. Kuhn, 1983. New VLSI tools.
Xilinx Virtex5/Virtex2Pro FPGA and in restricted time the Computer, pp: 11-14.
achieved result is reasonable. In contrast to this the 2. Moore, G.E., 1965. Cramming more components onto
resource consumed are varies based on the constraints integrated circuits, Electronics, pp: 116-144.
and tools. 3. International Technology Roadmap for

CONCLUSION www.itrs.net/ links/2009ITRS/Home2009.htm

The various High Level Synthesis (HLS) tools are and verification analysis on industrial design
presented in this paper. The digital circuits are examples ASPDAC, 04: 344-348.
designed and developed using various abstraction levels. 5. Ghenassia, F., 2005. Transaction-Level Modeling with
The complexity in handling the embedded system can be SystemC: TLM Concepts and Applications for
made easier with these evolved tools. The verification of Embedded Systems, Springer.
the design is made faster with the help HLS, which take 6. IEEE and OCSI, 2005. IEEE 1666TM-2005 Standard for
more tasks from the designer. To accomplish the task of SystemC. http://www.systemc.org.
system implementation (a high level application) and time 7. Keutzer, K., S. Malik, A.R. Newton, J. Rabaey and
to market, the perfect counterparts of the FPGA and HLS A. Sangiovanni-Vincentelli, 2000. System level
are utilized. The design productivity can be still increase design: orthogonalization of concerns and platform-
by finding solutions to the challenges, which we came based design, IEEE Trans. CAD, 19: 1523-1543.
across during our work. At first, the development of 8. Denolf, K., S. Neuendorffer and K. Vissers. 2009.
specific tools needs to be trained to the designer Using C-to-gates to program streaming image
(i.e. design entry should standardizes). The optimization processing kernels efficiently on FPGAs, FPL,
and exploration options of all the tools should be 09: 626-630.
augmented even with better tools. For example, reducing 9. Kindratenko, V. and R. Brunner, 2009. Accelerating
the memory utilization can be included in optimization cosmological data analysis with FPGAs. FCCM,
stage. The architecture and functionality of the design 09: 11-18.
varies by modifying source-code. An application based 10. Pingree, P.J., L.J. Scharenbroich, T.A. Werne and
on control logic and data flow needs some tools C.M. Hartzell, 2008. Implementing legacy-C
targeting the application. The tools that have a single algorithms in FPGA co-processors for performance
tool flow and language for developing the design will accelerated smart payloads, IEEE Aerospace
not fit for all the applications. The designer can have Conference, pp: 1-8.
a view on HLS tools at present, by the efficient 11. Guo, Y., D. McCain, J.R. Cavallaro and A. Takach,
comparison given in this paper. The designer can 2006. Rapid industrial prototyping and SoC design of
select a tool among various tools available by sort out 3G/4G wireless systems using an HLS methodology,
the vital metrics in the spider web diagram. The tools can EURASIP Journal on Embedded Systems, pp: 1.
be further enhanced by the developers and vendors by 12. Avnet Spartan-6 FPGA DSP Kit.
the reviewing this paper and thus everyone will be http://www.xilinx.com/ products/devkits/ AES-
benefitted. S6DSP-LX150T-G.htm.

Semiconductors (ITRS), 2009edition. http://

4. Wakabayashi, K., 2004. C-based behavioral synthesis

Middle-East J. Sci. Res., 22 (2): 241-254, 2014

253

13. Xilinx Spartan-6 FPGA Consumer Video Kit. 27. Yassa, F.F., J.R. Jasica, R.I. Hartley and S.E. Noujaim,
www.xilinx.com/ products/ devkits/TB-6S-CVK.htm. XXXX. A silicon compiler for digital signal

14. Director, S., A. Parker, D. Siewiorek and D. Thomas Jr, processing: methodology, implementation and
1982. A design methodology and computer aids applications. in Proc. IEEE, 7: 1272-1282.
for digital VLSI, IEEE Trans. Circuits and Systems, 28. Composano, R., XXXX. Design process model in the
28: 634-645. Yorktown Silicon Compiler, DAC, 88: 489-494.

15. Parker, A., D. Thomas, D. Siewiorek, M. Barbacci, 29. Composano, R., 1991. Path-based scheduling for
L. Hafer, G. Leive and J. Kim, XXXX. The CMU synthesis, IEEE Trans. CAD, 10: 85-93.
design automation system: an example of automated 30. Paulin, P.G. and J.P. Knight, 1989. Force-directed
data path design. DAC, 79: 73-80. scheduling for the behavioral synthesis of ASIC's,

16. Barbacci, M., G. Barnes, R. Cattell and D. Siewiorek, IEEE Transactions on Computer-Aided Design of
1978. The symbolic manipulation of computer Integrated Circuits and Systems, 8: 661-678.
descriptions: the ISPS computer description 31. Park, N. and A. Parker, XXXX. Sehwa. a program for
language, Dep. Comput. Sci, Carnegie-Mellon Univ., synthesis of pipelines, DAC, 86: 595-601.
Pittsburgh, PA,Tech. Rep. 32. Ku, D. and G. De Micheli, XXXX. Relative scheduling

17. Snow, E., D. Siewiorek and D. Thomas, XXXX. A under timing constraints, DAC, 91: 59-64.
technology-relative computer aided design system: 33. Ku, D. and G. De Micheli, 1990. A language for
abstract representations, transformations and design hardware design (version 2.0). Technical Report, UMI
tradeoffs. DAC, 78: 220-226. Order Jumber: CSL-TR-90-419, Stanford University.

18. Granacki, J., D. Knapp and A. Parker, XXXX. The 34. Küçükçakar, K., C.T. Chen, J. Gong, W. Philipsen and
ADAM advanced design automation system: T.E. Tkacik, 1998. An architectural design tool for
overview, planner and natural language interface, commodity ICs, IEEE Design and Test of Computers,
DAC, 85: 727-730. 15: 22-33.

19. Jain, R., K. Kucukcakar, M.J. Mlinar and A.C. Parker, 35. Biesenack, J., M. Koster, A. Langmaier, S. Ledeux,
XXXX. Experience with ADAM synthesis system, S. Marz, M. Payer, M. Pilsl, S. Rumler, H. Soukup,
DAC, 89: 56-61. N. Wehn and P. Duzy, 1993. The Siemens high-level

20. Paulin, P.G., J.P. Knight and E.F. Girczyc, XXXX. synthesis system CALLAS, IEEE Trans. VLSI
HAL. A multi-paradigm approach to automatic data Systems, 1: 244-253.
path synthesis, DAC, 86: 263-270. 36. Bergamaschi, R.A., R.A. O'Connor, L. Stok,

21. Marwedel, P., XXXX. The MIMOLA design system: M.Z. Moricz, S. Prakash, A. Kuehlmann and D.S. Rao,
tools for the design of digital processors. DAC, 1995. High-level synthesis in an industrial
84: 587-593. environment, IBM Journal of Research and

22. De Micheli, G., D. Ku, F. Mailhot and T. Truong, Development, 39: 131-148.
1990. The Olympus synthesis system, IEEE Design & 37. Lippens P.E.R., J.L. van Meerbergen, A. van der
Test of Computers, 7: 37-53. Werf, W.F.J. Verhaegh, B.T. McSweeney,

23. Micheli G. De and D. Ku, XXXX. HERCULES. A J.O. Huisken and O.P. McArdle, XXXX. PHIDEO. A
system for high-level synthesis, DAC, 88: 483-488. silicon compiler for high speed algorithms, EDAC,

24. Chandrakasan, A., M. Potkonjak, J. Rabaey and 91: 436-441.
R. Brodersen, XXXX. HYPER-LP. a system for power 38. Knapp, D.W., 1996. Behavioral synthesis: digital
minimization using architectural transformations, system design using the Synopsys Behavioral
ICCAD, 92: 300-303. Compiler, Prentice-Hall.

25. Rabaey, J., C. Chu, P. Hoang and M. Potkonjak, 1991. 39. Hemani, A., B. Karlsson, M. Fredriksson,
Fast prototyping of datapath-intensive architectures, K. Nordqvist and B. Fjellborg, XXXX. Application of
IEEE Design & Test, 8: 40-51. high-level synthesis in an industrial project, VLSI

26. Man H. De, J. Rabaey, J. Vanhoof, P. Six and Design, 94: 5-10.
L: Claesen, 1986. Cathedral-II—a silicon compiler for 40. Elliott, J.P., 1999. Understanding behavioral
digital signal processing, IEEE Design &Test of synthesis: a practical guide to high-level design,
Computers, 3: 13-25. Springer.

Middle-East J. Sci. Res., 22 (2): 241-254, 2014

254

41. Edwards, S.A, 2006. The challenges of synthesizing 57. Villarreal, J., A. Park, W. Najjar and R. Halstead,
hardware from C-like Languages, IEEE Design & Test XXXX. Designing modular hardware accelerators in
of Computers, 23: 375-386. C with ROCCC 2.0, FCCM, 10: 127-134.

42. Sanguinetti, J., 2006. A different view: hardware 58. Joseph, M., Bhat Narasimha, B. Sekaran and
synthesis from SystemC is a maturing technology, K. Chandra, 2007. Technology driven High-Level
IEEE Design & Test of Computers, 23: 387-387. Synthesis, International Conference on ADCOM,

43. Gajski, D., J. Zhu, R. Dömer, A. Gerstlauer and pp: 485-490.
S. Zhao, SpecC. 2000. specification language and 59. Wakabayashi, K., B. Schafer, P. Coussy and
methodology, Kluwer Academic Publishers. A. Morawiec Eds, 2008. High-Level Synthesis: From

44. Agility Design Solutions. 2007. Handel-C language Algorithm to Digital Circuit, Springer.
reference manual. 60. Bollaert, T., 2008. Catapult synthesis: a practical

45. Haldar, M., A. Nayak, A. Choudhary and P. Banerjee, introduction to interactive C synthesis, in P. Coussy
XXXX. A system for synthesizing optimized FPGA and A. Morawiec Eds. High-Level Synthesis: From
hardware from MATLAB, ICCAD, 01: 314-319. Algorithm to Digital Circuit, Springer.

46. BlueSpec, Inc. http://www.bluespec.com. 61. http://iverilog.icarus.com.
47. Edwards, S.A., XXXX. High-level synthesis from the 62. Bailey, B., F. Balarin, M. McNamara, G. Mosenson,

synchronous language Esterel. IWLS, 02. M. Stellfox and Y. Watanabe, 2010. TLM-Driven
48. Pellerin, D. and S. Thibault, 2005. Practical FPGA Design and Verification Methodology, Cadence

programming in C, Prentice Hall Professional Design Systems.
Technical Reference. 63. http://www.synopsys.com/Systems/BlockDesign/H

49. Gokhale, M., J. Stone, J. Arnold and M. Kalinowski, LS/Pages/default.aspx.
XXXX. Stream-oriented FPGA computing in the 64. Zhang, Z., Y. Fan, W. Jiang, G. Han, C. Yang and
Streams-C high level language, FCCM, pp: 49-56. J. Cong, 2008. AutoPilot: a platform-based ESL

50. Gupta, S., R. Gupta, N. Dutt and A. Nicolau, SPARK, synthesis system, High-Level Synthesis: From
2004. A parallelizing approach to the high-level Algorithm to Digital Circuit, ed. P. Coussy and A.
synthesis of digital circuits, Springer. Morawiec, Springer Publishers.

51. Tripp, J.L., M.B. Gokhale and K.D. Peterson, 2007. 65. Cong J. and W. Rosenstiel, 2009. The last byte: the
Trident: from high-level language to hardware HLS tipping point, IEEE Design & Test of Computers,
circuitry, IEEE Computer, 40: 28-37. 26(4): 104.

52. Nallatech, Inc., DIME-C user guide. 66. Urard, P., J. Yi, H. Kwon and A. Gouraud, 2008. User
53. Altera Corporation. 2009. Jios II C2H compiler user needs, in P. Coussy and A: Morawiec Eds. 2008.

guide, version, 9: 1. High-Level Synthesis: From Algorithm to Digital
54. Budiu, M., G. Venkataramani, T. Chelcea and Circuit, Springer.

S. Goldstein, XXXX. Spatial computation, ASPLOS, 67. Green, B., 2011. Edge detection tutorial. http://
04: 14-26. www.pages.drexel.edu/ ~weg22/edge.html. Accessed

 55. Mencer, O., XXXX. ASC. a stream compiler 30 March 2011.
for computing with FPGAs, IEEE Trans. CAD,
25: 1603-1617.

56. Coussy, P., C. Chavet, P. Bomel, D. Heller, E. Senn
and E. Martin, GAUT, 2008. A High-Level Synthesis
Tool for DSP Applications, in P. Coussy and A.
Morawiec Eds. High-Level Synthesis: From
Algorithm to Digital Circuit, Springer.

