
Middle-East Journal of Scientific Research 22 (2): 233-240, 2014
ISSN 1990-9233
© IDOSI Publications, 2014
DOI: 10.5829/idosi.mejsr.2014.22.02.21851

Corresponding Author: B. Saravana Kumaran, Department of Information Technology,
E.G.S. Pillay Engineering College, Nagapattinam, India.

233

Evaluation on High Level Synthesis for Parallel Computing in FPGA

B. Saravana Kumaran, M. Joseph1 2

Department of Information Technology, E.G.S. Pillay Engineering College, Nagapattinam, India1

Department of CSE, St. Joseph College of Engineering and Technology, Thanjavur, India2

Abstract: The trends in technology are improving in almost all areas of application that varies from consumer
goods, industrial application, electronic gadgets and communication. As the technological trends are improving
the complexity in electronic design increases along with an increase in logical resources. These needs
introduced a new technique of High Level Synthesis (HLS), in which the complexity in electronic design is
reduced. These HLS tools are developed by many FPGA manufacturers based on the application needs and
they compete among themselves for producing the tool that supports the faster time to market of the products.
This paper analyzed the different HLS tools based on the feature they support. The tools are selected based
on the availability of the license and this paper will give a glance on the tools for the beginner. The tools are
evaluated on the basis of architectural support (i.e. FPGA, CPU, DSP and GPU), language support and
Instruction Level Parallelism (ILP) and the results are tabulated.

Key words: High Level Synthesis (HLS) Instruction Level Parallelism (ILP) Architectural Support and
Language Support

INTRODUCTION the initial stages itself. As stated by Moore’s law,

The design of electronic circuit enters into the new way the challenge is increasing in the design flow.
era with the evolution of High Level Synthesis (HLS). The design complexity is increased as the functionality of
The difficulties in design are reduced by progressing level the design increase. This will lead to the increase in both
of abstraction. The electronic circuit design flow can be design time and team (i.e. human resource). This confirms
viewed in three different ways, namely, geometry, that, some techniques have to employ to enhance the
behavior and structure as shown on Gajski and Kuhn’s productivity of the design. The design time is reduced by
Y-chart [1]. In addition the five concentric circles in the accepting the fact of the slightly.
chart represent Algorithm, Register Transfer Level (RTL),
System level and Circuit and Logical representations. Increased Area: The productivity of the design is
The algorithms elaborate the types of Programming improved by incorporating the High Level Synthesis
languages, functions and loops. The operators and (HLS), as it automatically converts from the algorithmic
register are furnished by RTL concentric. In similar the level to Register Transfer Level. The programming
system specification is represented by system level. languages like ‘C’, ‘C++’ and Matlab are used to write the
Further the equation and logic representation are given function based on which the HLS will generate the
by circuit and logic respectively. For the past twenty RTL design. The HLS reduce the designer’s burden by
years, the hardware designer will manually develop the taking as many tasks as possible from the user.
RTL from the scratch (i.e. from specification of behavioral The process of resource allocation is done after the code
system). From that instance the RTL synthesis followed is analyzed. The time slot for each task is allotted in the
by place and route will terminate the design flow. The flow scheduling process. At the end, the resource binding has
should be verified at each and every stage, since; both two steps, such as, data element and operation of the
tools and designs are prepared by the user. The errors source code are assigned to memory element and operator
and faults are minimized and reduced by taking action in respectively. In addition to this, the peripheral interfaces

the transistor size is doubled for every 1.5 years; by the

Middle-East J. Sci. Res., 22 (2): 233-240, 2014

234

are monitored by the HLS, as it assigns the control industries has contributed to many HLS tools. Like IBM
and data signal between the peripheral and circuits. develop a GM BSSC system [9] and Silicon Compiler [10].
The HLS tools provide a number of positive progress All these tools are entertaining the same functions such
towards the design flow, such as, it reduces the error in as, generating the control, scheduling, binding and code
the code when compares to manual code. The time taken transformation. From here the research is divided, as they
to write the code is reduced by HLS. are contributing to each individual problem, as HAL has

The recent research reveals that the time required for force directed scheduling, in similar the conditional
verification will be multiples of design time. In contrast to branch in the code is resolved by using a path-based
this, the HLS will reduce the verification time by scheduling in Silicon Compiler. Further the pipelined
generating the testbenches, since the test vector used in implementation is generated using the Sehwa tool in
source code is used to verify the design. HLS is a ADAM. The unbound delay in operation has been
promising candidate for embedded system based on overcome by utilizing the relative scheduling technique in
FPGA. The design complexity has been reduced since the Hebe tool. The resource in the datapath is shared between
code for hardware architecture is maintained by HLS. the tasks by employing conflict Graph Colouring
The difficult hardware accelerator is designed using techniques. The design is specified using a custom
HLS with the least effort. The fastest time to market is language initially; Hercules system uses Hardware C to
achieved by the combination of FPGA and HLS. In this design the specification. This language is developed
paper, the HLS tool is evaluated based on their suitability based on the feet of ‘C’ programming language. It will
to the FPGA. Moreover the, tool is selected based on support the declarative and procedural semantics and
two parameters, namely, processing time and reduced mechanisms to support interface and design constraints.
delay. The advantage provide by the HLS made them To enhance the efficiency of the DSP processor the Silage
modern research area and researchers have thrown a language is incorporated in the Cathedral/Cathedral-II.
number of works based on HLS tool, which means the The language supports various and data types and
tools for HLS is developing rapidly. This paper evaluates transformation is made easy. In High Level Synthesis,
the tools based on the availability of the license and their the domain specific approach is initiated by combining the
support to FPGA platform. This paper will give a basic Cathedral-II and Silage programming language. Some real
startup to the one, who needs the faster prototyping time chip is produced by utilizing these earlier tools,
in FPGA. The remaining paper is as follows, section 2 but among the designer community these tools are not
reveals the progress in HLS tools for FPGA, in section 3, widely adopted. Since the RTL synthesis was under the
the process of parallel computing in FPGA is discussed, debate at that time and the RTL tools are not supported
the tools are evaluated based on architecture and by the researchers. This scenario changes as the
language in section 4 and section5 concludes the paper. performance of the RTL tools, improved in 1990s.

Advancement of HLS Tool for FPGA: The HLS tools are industries get attracted to the tools. Various tools are
practiced in real time environment, before the era of the developed by Philips [11], Simens [12], IBM [13] and
FPGA. Hence, at the initial transformation the HLS tools Motorola [14]. In addition to this the many HLS tools are
are developed based on ASIC. A High Level Synthesis provided by EDA vendors as Visual Architect from
tool evolved in 1970 named as CMU-DA [2]. The tool flow Cadence [15], Behavioral Compiler [16] from Synopsys
and reduced complexity in CMU-DA attract the and Mentor Graphics developed a tool called as Monte
researchers and many tools are developed in the year [17]. Since the system designers are not familiar with the
1980’s and at the start of 1990. As a result of researcher’s behavioral HDL, these tools are not familiar among the
interest, the academician in California University design community as it uses behavioral HDL for
developed Hyper/Hyper-LP [3] system. A new tool called specifying the input.
HAL [4] was introduced by Bell-Northern research. In relation to these tools, the debate among both
University of Southern California developed the research community and the design community is that
ADAM system [5]. Kiel University of Germany using ‘C’ based language for HLS tools [18]. The demerits
developed an HLS tool called as MIMOLA [6], apart from of ‘C’ language such as, timing, accuracy, interface,
these tools Stanford University had lent a hand to synchronization, hierarchy, parallelism and concurrency
develop a tool called as Hebe/Hercules [7, 8] HLS system. is overcome by developing the language based on
On the other hand, the interest from the semiconductor ‘C’ language that would support hardware interface.

These tools are practically used as the semiconductor

Middle-East J. Sci. Res., 22 (2): 233-240, 2014

235

The hardware languages based on ‘C’ extension are interact fewer time per second and Fine-grained
Handel-C [19], SystemC [20], HardwareC [21] and parallelism exhibits, when the task interact many times per
SpecC [22]. Apart from these languages, some tools use second [30-43].
various languages other than ‘C’ such as, Matlab [23] and The FPGA is scalable and it can run both fine-grained
BlueSpec [24]. The important factor that dominates the and coarse-grained architecture at the same time based on
popularity of the HLS tools is that whether the tool can be the application. Even the optimization of hardware
targeted in Field Programmable Gate Array (FPGA). based on the technology is possible as shown in [36].
The modern day vendors developed many HLS tools that The application with more complex algorithm cannot be
can support the FPGA like, Altera developed an FPGA implemented in single FPGA, in such case Multi-FPGA
targeted HLS tool, namely C2H [25], Mentor Graphics implementation can be used for executing the
developed Handel-C compiler [19], ROCCC [26], applications. However, this is not the case that
CASH [27], Impulse C [28] and SPARK [29]. differentiates FPGA from a traditional multiprocessor,

Parallel Computing in FPGA: The process of of the FPGA is achieved by single instruction,
simultaneously computing the various logical, interconnects can be reconfigured dynamically and the
arithmetic and input/output operations is known to processing element is a single bit. In FPGA, the different
be parallel computing, it is based on the fact that the level of parallelism is possible, such as, bit-level,
major problem is sub-divided into many sub-task and data-level, pipelined-level, task-level and instruction-level
these sub-tasks are concurrently solved. The parallel parallelism also pipelined techniques can be implemented.
computer varies accordingly, such as Grid Computing, Among which the instruction-level parallelism can
Symmetric Multiprocessing (SMP), Cluster Computing, contribute to the improvement in efficiency of FPGA in
Graphical Processing Unit (GPU), Multicore Computing, terms of delay (i.e. reduced delay).
Field Programmable Gate Array and parallel computing on
ASIC’s. The configuration of on chip RAM will connect Recent Trends in Programming Tools for FPGA:
the different logics and hardware resources in the FPGA.
The configuration and reconfiguration of FPGA differs
based on the time, if the SRAM is programmed at the start
of the execution, then it is configuration and if SRAM is
programmed during the execution then it is
reconfiguration. These types of configuration support
the users to implement the different algorithms and
application on the same hardware. Also, this can even,
change the logics and routing of an application at various
times and leads to the Run-Time Reconfigured hardware.
In tradition, the software written for the computer will
compute the task in a serial manner. The problem is solved
by constructing it as an algorithm and instruction set of
the algorithm is executed serially. The central processing
unit in the computer will execute this instruction as
specified by the designer. In this approach, the processor
will execute the instruction, one per second. The second
instruction is executed after the completion of the first
instruction. In contrast to serial computing, the problem
is solved by multiple resources at a same time in parallel
computing. The parallel computing is accomplished by
mapping the algorithmic problem into independent part
and executes each part independently with each other.
These parts are also called as threads, process, task and
threads based on the level of hierarchy. Coarse-grained
parallelism exhibits, when the sub-task of the algorithm

the other features that differs FPGA are, reconfigurability

The Hardware Description Language (HDLs) is being
evolved from the past five decades and the
Figure 1 shows an interesting view of the evolution of
programming language.

The HDL language is designed to express the
logic, algorithm and hardware object, moreover, it will
execute the code in parallel manner in contrast the serial
execution of conventional programming languages.
The HDL language can be represented in two ways,
such as Verilog and VHDL which had their own
HDL language, having their own compiler, analyzer and
syntaxes.

In distinguishing to this; the other HDL language is
there, where their base is formed from programming
languages like Java, Ruby, C, Occam, F, Matlab and C++.
In the day-to-day development of the FPGA technology,
the HDL language based second approach is recognized
by the design community. This is because the designer
can describe the specification in High Level of abstraction
with very effectively with easy time to market.

Evaluation of the Tools
Based on FPGA: The need of hardware resource
increases as the application needs are increasing.
Hence, many FPGA vendors are competing among
themselves to manufacture a high end board at low cost.

Middle-East J. Sci. Res., 22 (2): 233-240, 2014

236

Fig. 1: Evaluation of High Level Language

Fig. 2: Development in Xilinx FPGA

Fig. 3: Development in Altera FPGA

Middle-East J. Sci. Res., 22 (2): 233-240, 2014

237

Fig. 4: Development in Actel FPGA

Fig. 5: Development in Lattice FPGA

The FPGA boards are classified based on the varies accordingly with the configuration of the board and
manufacturer also each manufacturer will have various application they are made for. The Figure 2 shows the
boards based on their field of application they are Xilinx board developed over the year in terms of logical
going to be used. In similar, the boards can be resource and speed, in similar the same result for Altera
classified based on their total number of logical resources, board is shown in Figure 3. The basic boards used in the
interfacing module, SRAM capacity, supportable DSP research, institution and in industries are listed and the
blocks, the speed of SERDES and I/O blocks. There are same count for Actel and Lattice is shown in Figure 4 and
many semiconductor industries that manufacture the Figure 5 respectively [40].
FPGA, among them some of the third party manufacturers
are also there. But in recent years, there are four main Based on Language Support: HLS tools can also be
FPGA competitor are there namely Xilinx, Altera, Lattice
and Actel. Each manufacturer introduces their own boards
along with several features at various costs. The cost

evaluated on the various features of their language.
The supporting language should feature the designer with
High Level Programming language (HLPL) to specify

Middle-East J. Sci. Res., 22 (2): 233-240, 2014

238

Table 1: Open Tools Supporting Various Architecture

Table 2: Proprietary Tools Supporting FPGA Architecture

the algorithm. The Abstract Syntax Tree (AST) formation Synthesis. The tool that supports the FPGA architecture
of the initial source code should be formulated in parsing is shown in Table 2 with their proprietary. The last column
stage; the scheduling stage in the HLS tools should in the table shows the language supporting the
support Loop Unrolling (LU), Loop Merging (LM), Instruction Level Parallelism (ILP), which is one of the
Hierarchical Synthesis (HS), Loop Pipelining (LP), major areas of research in High Level Synthesis (HLS).
Automatic Pipelining (AP), the final binding stage will Since these tools are developed from a major competitor,
allocate each operation of a hardware unit. Apart from the tools support various algorithms and techniques that
these features, the architecture support of the tools based would increase the performances of the application
on Field Programmable Gate Array (FPGA) and language developed in High Level Synthesis (HLS).
are considered. Another important characteristic is the
tool should support reduced delay and high speed of the CONCLUSION
application and Instruction Level Parallelism (ILP).

The Table 1 shows the tools that support different This paper presents a number of various High Level
architecture such as Central Processing Unit (CPU), Synthesis (HLS) tools with various feature and parameters
Digital Signal Processing (DSP) and Graphics Processing support by the tools. Also, analyzed the various High
Unit (GPU). The result in the Table 1 is analyzed with the Level Language (HLL) both based on ‘C’ programming
open tools and there is no support for High Level and individual Hardware Description Language (HDL).

Middle-East J. Sci. Res., 22 (2): 233-240, 2014

239

The tools presented in the evaluation section are analyzed 12. Biesenack, J., M. Koster, A. Langmaier, S. Ledeux,
under different categories such as the architectural S. Marz, M. Payer, M. Pilsl, S. Rumler, H. Soukup,
support (i.e. CPU, DSP, FPGA, GPU) and language N. Wehn and P. Duzy. The Siemens high-level
support (i.e. Instruction Level Parallelism). The ILP is an synthesis system CALLAS, IEEE Trans. VLSI
important feature that would reduce the delay and Systems, 1(3): 244-253.
increase the speed of operation. However, the tools 13. Bergamaschi, R.A, R.A. O' Connor, L. Stok,
analyzed in this paper are based on the availability of the M.Z. Moricz, S. Prakash, A. Kuehlmann and
license and this paper can give a modest introduction to D.S. Rao. High-level synthesis in an industrial
the tools that supports ILP and in the future the idea of environment, IBM Journal of Research and
Instruction Level Parallelism (ILP) is progressing and Development, 39(1-2): 131-148.
taken to the next stage by applying it in some 14. Küçükçakar, K., C.T. Chen, J. Gong, W. Philipsen and
applications. T.E. Tkacik. Matisse: an architectural design tool for

REFERENCES 15(2): 22-33.

1. Gajski, D.D. and R.H. Kuhn, 1983. New VLSI tools, K. Nordqvist and B. Fjellborg. Application of
Computer, 16: 11-14. high-level synthesis in an industrial project. in Proc.

2. Parker, A., D. Thomas, D. Siewiorek, M. Barbacci, VLSI Design, 94: 5-10.
L. Hafer, G. Leive and J. Kim. The CMU design 16. Knapp, D.W., 1996. Behavioral synthesis: digital
automation system: an example of automated data system design using the Synopsys Behavioral
path design, in Proc. DAC, 79: 73-80. Compiler. Prentice-Hall.

3. Rabaey, J., C. Chu, P. Hoang and M. Potkonjak, 1991. 17. Elliott, J.P., 1999. Understanding behavioral
Fast prototyping of datapath-intensive architectures, synthesis: a practical guide to high-level design.
IEEE Design and Test, 8(2): 40-51. Springer.

4. Paulin, P.G., J.P. Knight and E.F. Girczyc. HAL: 18. Edwards, S.A., 2006. The challenges of synthesizing
A multi-paradigm approach to automatic data path hardware from C-like Languages, IEEE Design and
synthesis. in Proc. DAC, 86: 263-270. Test of Computers, 23(5): 375-386.

5. Granacki, J., D. Knapp and A. Parker, The ADAM 19. Agility Design Solutions, 2007. Handel-C language
advanced design automation system: overview, reference manual.
planner and natural language interface, in Proc. DAC, 20. IEEE and OCSI, 2005. IEEE 1666TM-2005 Standard for
85: 727-730. SystemC. http://www.systemc.org.

6. Marwedel, P. The MIMOLA design system: tools for 21. Ku, D. and G. De Micheli, 1990. Hardware C-a
the design of digital processors, in Proc. DAC, language for hardware design (version 2.0),
84: 587-593. Technical Report. UMI Order Jumber: CSL-TR-90-419.

7. Micheli, G. De, D. Ku, F. Mailhot and T. Truong, Stanford University.
1990. The Olympus synthesis system, IEEE Design 22. Gajski, D., J. Zhu, R. Dömer, A. Gerstlauer and
and Test of Computers, 7(5): 37-53. S. Zhao, 2000. Spec: specification language and

8. Micheli, G. De and D. Ku, HERCULES-A system for methodology. Kluwer Academic Publishers.
high-level synthesis, in Proc. DAC, 88: 483-488. 23. Haldar, M., A. Nayak, A. Choudhary and P. Banerjee.

9. Yassa, F.F., J.R. Jasica, R.I. Hartley and S.E. Noujaim, A system for synthesizing optimized FPGA hardware
1987. A silicon compiler for digital signal processing: from MATLAB. in Proc. ICCAD, 01: 314-319.
methodology, implementation and applications, 24. BlueSpec, Inc. http://www.bluespec.com.
in Proc. IEEE, 7(9): 1272-1282. 25. Altera Corporation, 2009. Jios II C2H compiler user

10. Composano, R. Design process model in the guide, version, 9: 1.
Yorktown Silicon Compiler. in Proc. DAC, 88: 489-494. 26. Villarreal, J., A. Park, W. Najjar and R. Halstead.

11. Lippens, P.E.R., J.L. van Meerbergen, A van der Designing modular hardware accelerators in C with
Werf, W.F.J. Verhaegh, B.T. McSweeney, J.O. ROCCC 2.0. in Proc. FCCM, 10: 127-134.
Huisken and O.P. McArdle. PHIDEO: a silicon 27. Budiu, M., G. Venkataramani, T. Chelcea and
compiler for high speed algorithms, in Proc. EDAC, S. Goldstein. Spatial computation, in Proc. ASPLOS,
91: 436-441. 04: 14-26.

commodity ICs. IEEE Design and Test of Computers,

15. Hemani, A., B. Karlsson, M. Fredriksson,

Middle-East J. Sci. Res., 22 (2): 233-240, 2014

240

28. Pellerin, D. and S. Thibault, 2005. Practical FPGA 36. Joseph, M., Bhat Narasimha. B. Sekaran and
programming in C. Prentice Hall Professional K. Chandra, 2007. Technology driven High-Level
Technical Reference. Synthesis. International Conference on ADCOM,

29. Gupta, S., R. Gupta, N. Dutt and A. Nicolau, 2004. pp: 485-490.
SPARK: a parallelizing approach to the high-level 37. The legup homepage." http://legup.eecg.utoronto.ca
synthesis of digital circuits, Springer. /.

30. The Xilinx Vivado homepage. http://www.xilinx.com/ 38. The cuda homepage." http://www.nvidia.com/
products/design-tools/vivado/. object/cuda home new.html.

31. The opencl homepage. https://developer.nvidia.com/ 39. The openhmpp homepage." http://www.caps-
opencl. entreprise.com/openhmpp-directives/.

32. http://iverilog.icarus.com/ 40. The open mpi homepage." http://www.open-mpi.org/.
33. The cynthesizer 5 homepage. 41. The openacc homepage." http://www.openacc.org/.

http://www.forteds.com/products/ cynthesizer.asp. 42. The openmp homepage." http://openmp.org/.
34. The c-to-silicon homepage." http://www.forteds.com/ 43. The posix threads tutorial."https://

products/cynthesizer.asp. computing.llnl.gov/tutorials/pthreads/.
35. http://www.synopsys.com/Systems/BlockDesign/H

LS/Pages/SynphonyC-Compiler.aspx.

