
Middle-East Journal of Scientific Research 21 (12): 2231-2237, 2014
ISSN 1990-9233
© IDOSI Publications, 2014
DOI: 10.5829/idosi.mejsr.2014.21.12.21843

Corresponding Author: Olalekan S. Akinola, Department of Computer Science, University of Ibadan, Nigeria.

2231

An Empirical Comparative Analysis of Programming Effort,
Bugs Incurrence and Code Quality Between Solo and Pair Programmers

Olalekan S. Akinola

Department of Computer Science, University of Ibadan, Nigeria

Abstract: Pair programming has been adjudged the better approach to programming especially in learning
environments. However, little or no empirical evidence exists to support this claim in terms of effort expended
in programming, bugs incurrence and quality of code obtained. This study was therefore designed to compare
the solo and pair programming with these factors. Sixty volunteered student-programmers were randomly
assigned to pair and solo programming groups. The solo group consists of 30 participants while the rest were
randomly paired into 15 pair programming subgroups. The two groups were given the same programming task
without time limit placed on them. The effort (times) expended on analysis, programming and debugging as well
as number of bugs incurred by the groups and their effectiveness score were obtained and analyzed. Briefly,
the result shows that pair programming performs better than solo programming in terms of the factors analyzed.

Key words: Solo and pair programming Extreme programming Software quality assurance

INTRODUCTION the navigator. The one that types at the only computer

At one extreme end of computer programming is a observes and ‘criticise’ the work of the driver-looking for
single person doing all the thinking, design and tactical and strategic defects is called the navigator. Some
implementing a program. This is solo programming. tactical defects might be syntax errors, typos and calling
But two heads, they say, are better than one. Pair the wrong method. Strategic defects occur when the
programming, dates at least from 1970 [1], is a style of driver is headed down the wrong path-what driver and
programming in which two programmers work side-by- navigator are implementing just won’t accomplish what it
side at one computer with one keyboard and one mouse, needs to accomplish [7].
continuously collaborating on the same design, algorithm, The strategic, longer-range thinker of the
code, or test [2-4]. The emergence of agile methodologies programming pair is the navigator. Because the navigator
and Extreme Programming, XP [5] has popularized the pair may not be deeply involved with the design, algorithm,
programming practice. code or test, he or she can have a more objective point of

An agile approach is one that values: “Individuals view and can better think strategically about the direction
and interactions over processes and tools, working of the work. In pair programming, the driver and the
software over comprehensive documentation, customer navigator communicate effectively, brainstorm at any time
collaboration over contract negotiation and responding to the situation calls for it and periodically there can be a
change over following a plan” [3]. Extreme Programmers switch of roles between the driver and the navigator.
work together in pairs and as a group, with simple design Pair programming has been adjudged to be a better
and obsessively tested code, improving the design
continually to keep it always just right for the current
needs [6].

Pair programming is thus component of both XP and
Agile approaches of software development. The two
participants in pair programming are tagged the driver and

computer available is the driver. The other partner that

alternative to solo programming. Jo et al. [8] opine that
pair programming is better than solo programming
especially when the complexity of the programming task
is low. They further submit that pair programming yields
code solutions of higher quality if the complexity of the
task is high. On the code testing side, pair programmers

Middle-East J. Sci. Res., 21 (12): 2231-2237, 2014

2232

delivered correct and higher coverage test sets [9]. Lech appears to be more engaging, useful and enjoyable.
[10] is of the opinion that pair programming makes testing Mustafa [23] also asserts that collaborative programming
more rigorous, thorough and effective. could be a chance to dissipate gender differences in

Solo Versus Pair Programming in Educational and summarized the significant benefits of pair programming
Software Development Environments: Pair programming as follows:
has been used in educational environments and has a lot
of potential benefits to learners of computer programming Mistakes are caught as they are typed;
[11-14]. For instance, Charlie et al. [15] opined that Time taken to code is usually small;
academic achievement is enhanced when an individual The defect or bugs incurred are usually lower
learns information with others. In a study carried out by compared with the solo programming;
Linda et al. [16], pair programming has been shown to There is thus a code review taking place in pair
assist female students to learn better in programming and programming process;
leads to women retention in Computer Science. Further Pair programming produces better design and quality
results from their study however show that there solution as a result of brainstorming and pair
was no significant difference in pass rates between relaying;
paired and solo students. Brian et al. [2] assert that the People learn better about the system development
transition from paired to solo programming is easy for process; and
students. Team building usually results; with people working

McDowell et al. [13] noted that applying pair together and better information flow.
programming method to first year students resulted in a
greater percentage of students who successfully Rajendran and David [25] assert that industry and
completed the course. Quantitative studies of Nagappan academia have turned their attention and interest toward
[11], Hanks et al. [12], McDowell, et al. [13] and others pair programming in recent years. It has been widely
that compared the performances of pair programming accepted as an alternative to traditional individual
students and solo students showed that the former were programming.
more likely to perform better and turn in solution of higher In the present study, we employed an
quality. experimental proof approach to determine if there is

On the other hand, some studies, [17- 20] have any significant difference in the performance of solo and
suggested that it is not obvious that pair programming is pair programming approaches; by studying the time taken
better than solo programming. For instance Charlie et al. for program comprehension (analysis), time taken for
[15] study submitted that despite the fact that coding and debugging, number of bugs incurred by the
pair-programming results in improved programs, when groups and the outcomes of the participants in the
used to teach programming it appears not to affect the experiments.
extent to which students master course material and are
able to independently apply their knowledge to new MATERIALS AND METHODS
problems. Tessem [18], Gittins and Hope [17] also
showed that some students found the experience Subjects: Sixty students who had passed through
irritating, inefficient and exhausting. According to Structured Programming (CSC 232) course using Java
Mathias [21], Single developers are as costly as programming language as a tool volunteered and
programmer pairs, if both programmer pairs and single participated in this study. The students were taken
developers with an additional review phase are forced to through the concepts of Structured programming and
produce programs of similar level of correctness. Object Oriented Programming (OOP) paradigms, including
VanDeGrift [19] showed that the students complained files and database handling in Java for twelve weeks in
about working among people with different personalities 2013/2014 session, at the Department of Computer
and skill levels. Science, University of Ibadan, Nigeria. The experiment

However, as argued by Bryant [22] there is evidence actually took place at a practical class lasting five hours
to suggest that pair programming in some situations at the end of the 11 week.

attitudes towards programming. Alistair and Laurie [24]

th

Middle-East J. Sci. Res., 21 (12): 2231-2237, 2014

2233

Experimental Design and Experimental Artifact: The Effectiveness: Score obtained at the end of the
experimental artifact used was a programming problem on
computerizing an admission system in a hypothetical high
school. The participants were given the problem
specification to write a Java program to solve. The 60
participants were randomly divided into two groups.
The first group consisting 30 participants worked as solo
group. They individually worked on the problem from the
comprehension (analysis) to the implementation phase.
The second group consists of 30 participants who were
also randomly assigned to 15 pair groups. The two groups
worked independently on the same artifact without any
time restriction placed on them. The groups were asked to
record all their analyses as well as the times taken to do
the analysis, time taken to code and debug and all the
bugs reported by the compiler.

During the analysis phase, the groups were expected
to comprehend the problem and analyze it for the input
and output variables as well as the process logic needed
to solve the given problem. The program design on
appropriate data and control structures needed to solve
the problem was also carried out by the participants. The
researcher ensured proper compliance of the groups to
the experiment’s rules and collated the reports for
analysis.

A two-group between-subjects research design
approach was used in this study. The participants were
randomly assigned to the two levels of the independent
variable (Solo or Pair). In this design, each participant was
assigned to only one group and consequently, the two
groups were independent of one another. The problem
specification artifact is given as Appendix at the end of
this paper.

Variables: One major independent variable was
manipulated in the study: The programming group; Solo
or Pair.

The Four Dependent Variables Measured Were:

Comprehension (Analysis) time: the time spent by a
group or an individual in understanding the problem
and documents the analysis report.
Coding time: The time spent by a group or an
individual to translate the analysis into a chosen
computer programming language and to debug the
program completely of errors /bugs.
Number of Bugs: The numbers of errors recorded
during compilation.

exercise. This is a measure of the accuracy and
efficiency of the code produced. This was measured
over 10 marks.

Statistics Test: The data obtained in this study was
subjected to independent samples t-test at p = 0.05.
Descriptive statistics were also employed in the analysis
of the data.

RESULTS

Four major results were obtained in this study as
stated in section 3.3.

Comprehension (Analysis) Time: The time taken for the
solo programmers to comprehend and analyze the problem
ranged from 25 (minimum) to 120 (maximum) minutes with
mean time taken of 56.27 ± 4.11 Standard Error of Mean
(SEM). On the contrary, pair programmers took between
15 to 60 (mean = 38.00 _± 3.46 SEM) minutes for their
analysis.

The independent t-test statistic result (p = 0.006)
showed that there was a high significant difference
between the times taken by both Solo and Pair
programmers in the study.

Coding and Debugging (Programming) Time: The time
taken by the Solo programmers to do the coding
and debugging ranged from 163 to 276 minutes
(mean = 217.37_± 5.17 SEM), while the Pair groups took
between 125 to 260 (mean = 185.00 _± 9.94 SEM) minutes
for these tasks. The t-test showed a high significant
difference between the two groups (p = 0.03).

Number of Bugs / Errors Incurred at Compilation:
The total number of bugs/errors (Syntax, semantic and
logic) incurred by Solo programmers ranged from 10 to 60
(mean = 21.17 ± 2.10 SEM) while the Pair programmers
incurred between 2 and 50 (mean = 17.53 ± 3.74) bugs. The
t-test showed no significant difference (p = 0.37) between
the Solo and Pair groups in their bugs incurred.

Effectiveness: The effectiveness gives the score obtained
(out of a maximum of 10) by the participants in the
exercise as a measure of their performance. Results
showed that Solo programmers scored between 2.0 and
6.0 (mean = 3.93 ± 0.17) while Pair programmers had
between 4.0 and 8.0 (mean = 5.57 ± 0.29). The independent
t-test showed a high significant difference between the
effectiveness of the two groups (p = 0.00).

Middle-East J. Sci. Res., 21 (12): 2231-2237, 2014

2234

Fig. 1: Mean Analysis Time taken by the Participant
Groups

Fig. 2: Mean Time Taken for Programming and Debugging

Fig. 3: Number of Bugs Incurred by Solo and Pair
Programmers

Fig. 4: Effectiveness of the Solo and Pair Programmers

Discussion of Results: Solo programming has been the
usual programming practice from time immemorial.
However, it has been criticized for a number of demerits
such as having long time duration for program
development, high bug incurrence rate, poor quality
output, among others [24]. This study was conducted in
order to verify the efficacy of pair programming in
imparting programming knowledge to students and in
software development environments.

Analysis Effort: The first step in programming is the
analysis of the problem at hand. The program must be
understood (comprehended) and carefully analysed for
the input and output variables expected as well as the
process logic to follow in solving the problem at hand. At
the analysis phase, program design also comes into play.
The design of the inputs and outputs, user interface, data
structures, file/database design are carried out. Ideally, it
is expected that once the analysis and design are
thoroughly done by a programmer, then the problem
would be solved with a greater level of accuracy and at a
lesser time. The effort expended by the programmer in the
analysis and design is likened to the total time spent
doing the analysis.

Results from this study indicate that solo
programmers expended more effort (average of 56
minutes) on the analysis/design than the pair
programmers, who expended less effort on the same task
(average of 38 minutes). This accounts for the high
significance difference (p < 0.05) between the variables.
The results suggest that pair programmers spent less time
in the exercise possibly due to the “two-brain effects”.
Pair programming is thus recommended for good program
analysis and design in software development exercise.

Programming Effort:Following the analysis and design
phase is the real programming, which is usually tagged as
the implementation phase. Debugging of errors reported
by compilers is carried out by programmers by inspecting
the locations of the bugs and fixing them. The effort
expended (time taken) by the participants for this phase
was recorded, analysed and compared.

The study shows that solo programmers spent more
time (average of 217 minutes) for their programming than
their pair counterparts who spent on the average, 185
minutes on the same task given to them. This accounts for
the high significant difference between the times spent for
programming by the two independent groups (p < 0.05).

The program implementation phase is also very
critical in software development. The quality of the
prospective software is at stake once it is full of bugs and
if wrong logic is used to implement it. Programmers often
spend enormous time implementing a piece of code.
Results from this study show that pair programming could
 assist in reducing time spent on implementing programs
especially if it is well planned and conducted. The results
obtained are in support of the submissions of Constantine
[26], Beck [5], Alistair and Laurie [24] and Jo et al. [8].

Middle-East J. Sci. Res., 21 (12): 2231-2237, 2014

2235

Bugs Incurrence: Bugs are errors incurred by REFERENCES
programmers during programming. Bugs are serious
threats to quality of software as well as its acceptance by
clients. This study compares the level of bugs incurrence
by the solo and pair programmers in order to determine
which approach will reduce the number of bugs in
programming. The mean bug incurred by solo
programmers was 17 as compared to the pair programmers
(21). This small marginal difference, however, was not
significant (p > 0.05), indicating that “the difference
between the two groups was not large enough to attribute
to anything other than chance” [15]. This result suggests
that despite the fact that pair-programming results in
improved programs, it does not mean that bugs will not
still occur.

Programmers’ Effectiveness: The quality of the code
outputs produced by the solo and pair programmers was
determined by scoring them based on accuracy of their
programs to specification, use of suitable data structures
and data structures, number of lines of code produced
(efficiency) and documentations (white spaces and
comments) of the programs. Results from the study show
a high significant difference (p < 0.05) between the two
programming groups with pair programmers performing
better. On the average, solo programmers scored 4 while
pair programmers 6 out of maximum of 10 marks allotted to
their effectiveness. This result further buttresses the fact
that pair programming has higher advantage than solo
programming in software design and implementation. The
results are not far different from the claims of other
researchers [10, 27] who had done extensive works in this
domain.

CONCLUSION

The performance of programmers using solo or
pair programming approaches was examined in this
study. Pair programming has been shown to perform
better in terms of programmers’ efforts expended on
analysis and implementation, bugs or errors incurred
and their final effectiveness in producing quality
programs.

ACKNOWLEDGEMENT

The researcher appreciates the voluntary and
dedication of the students that participated in this study.

1. Edgar Acosta Chaparro, Aybala Yuksel, Pablo
Romero and Sallyann Bryant (2005). Factors
Affecting the Perceived Effectiveness of Pair
Programming in Higher Education, 17th Workshop of
the Psychology of Programming Interest Group,
Sussex University, June 2005, pp: 5 - 18.
www.ppig.org.

2. Brian Hanks, Sue Fitzgerald, Renée McCauley, Laurie
Murphy and Carol Zander (2011). Pair programming
in education: a literature review, Computer Science
Education, 21(2): 135-173.

3. Sallyann Bryant, Benedict du Boulay and Pablo
Romero, 2006. XP and Pair Programming practices,
PPIG Newsletter, September 2006, pp: 1 - 6.

4. Williams, L. and R. Kessler, 2003. Pair Programming
Illuminated. Reading, Massachusetts, Addison
Wesley.

5. Beck, K., 2000. Extreme Programming Explained:
Embrace Change. 2000, Reading, Massachusetts:
Addison-Wesley.

6. Ron Jeffries, 2001. What is extreme programming?
http://xprogramming.com/book/whatisxp/ visited in
August 2014.

7. Laurie Williams, 2004. Software Reviews and Pair
Programming, pp: 11-32.

8. Jo E. Hannay, Tore Dybå, Erik Arisholm and Dag
I.K. Sjøberg, 2009. The effectiveness of pair
programming: A meta-analysis, Information and
Software Technology, 51(7): 1110-1122.

9. Otávio Augusto Lazzarini Lemos, Fabiano Cutigi
Ferrari, Fábio Fagundes Silveira and Alessandro
Garcia (2012). Development of auxiliary functions:
should you be agile? an empirical assessment of pair
programming and test-first programming,
Proceedings of the 34th International Conference
on Software Engineering, IEEE Press Piscataway, NJ,
USA, pp: 529-539.

10. Lech Madeyski, 2008. Impact of pair programming on
thoroughness and fault detection effectiveness of
unit test suites, Software Process: Improvement and
Practice, 13(3): 281-295.

11. Nagappan, N., et al., 2003. Improving the CS1
experience with Pair Programming. In SIGCSE.
2003.

12. Hanks, B., et al., 2004. Program Quality with pair
programming in CS1. in1 ITiCSE '04: Proceedings of
the 9th annual SIGCSE conference on Innovation
and technology in computer science education.
2004. Leeds, United Kingdom: ACM Press.

Middle-East J. Sci. Res., 21 (12): 2231-2237, 2014

2236

13. McDowell, C., et al., 2003. The impact of pair- 20. Melnik, G. and F. Maurer, 2002. Perceptions of Agile
programming on student performance, perception Practices: A Student Survey. In Extreme
and persistence. in ICSE '03: In Proceedings of the Programming/Agile Universe. Chicago, IL.
25th International Conference of Software 21. Matthias M. Müller, 2005. Two controlled
engineering,. Portland, Oregon: IEEE Computer experiments concerning the comparison of pair
Society. programming to peer review, Journal of Systems and

14. Williams, L., et al., 2000. Strengthening the case for Software, 78(2): 166-179.
pair-programming. IEEE Software, 17(4): 19-25. 22. Bryant, S., 2004. XP: Taking the psychology of

15. Charlie McDowell, Linda Werner, Heather Bullock programming to the eXtreme. in 16 Workshop of
and Julian Fernald (2002). The Effects of Pair- Psychology of Programming Interest Group.
Programming on Performance in an Introductory Institute of Technology, Carlow, Ireland.
Programming Course, Proceedings of the 33rd ACM 23. Mustafa Baer, 2013. Attitude, Gender and
Technical Symposium on Computer Science Achievement in Compuer Programming Middle-East
Education, February 7-March 3, 2002. Journal of Scientific Research, 14(2): 248-255, 2013

16. Linda, L. ,Werner, Brian Hanks and Charlie Mcdowell, ISSN 1990-9233.
2004. Pair-Programming Helps Female Computer 24. Alistair Cockburn and Laurie Williams, 2002. The
Science Students ACM Journal of Educational Costs and Benefits of Pair Programming,
Resources in Computing, Vol. 4, No. 1, March 2004, http://www.cs.pomona.edu/classes/cs121/supp/will
Article 3. iams_prpgm.pdf, downloaded in August 2014.

17. Gittins, R. and S. Hope, 2001. A study of Human 25. Rajendran, S. and A. David, 2012. Umphress.
Solutions in eXtreme Programming. In 13th Research Article Collaborative Adversarial Pair
Workshop of the Psychology of Programming Programming. ISRN Software Engineering, Volume
Interest Group, Bournemouth UK. 2012, http://www. downloads. hindawi. com/isrn/ se/

18. Tessem, B., 2003. Experiences in Learning XP 2012/516184.pdfý Downloaded on 23rd May, 2013.
Practices: A Qualitative Study. in Extreme 26. Constantine, L.L., 1995. Constantine on Peopleware.
Programming and Agile Processes in Software Yourdon Press Computing Series, ed. E. Yourdon,
Engineering, 4th International Conference.. Genova, Englewood Cliffs, NJ: Yourdon Press.
Italy: Springer. 27. Brain Hanks, 2008. Empirical evaluation of distributed

19. Van De Grift, T., 2004. Coupling pair programming pair programming, International Journal of Human-
and writing: learning about students' perceptions and Computer Studies, 66(7): 530-544.
processes, in Proceedings of the 35th SIGCSE
technical symposium on Computer science
education. ACM Press: Norfolk, Virginia, USA.

th

Appendix: Programming Experimental Artefact
The Problem Specification:
CSC Grammar School has just concluded an entrance examination test for her prospective students. This has
been a yearly routine exercise for the intending students of the school. As a matter of fact, varied number of
students attends the test yearly. Prospective students answer questions from 10 different subjects; each being 100
marks. The mean of the scores in the subjects is then computed; 50 being set as the cut-off point for the admission.
The management of the school has just decided to employ the use of computers to assist them in computing some
statistics from the yearly test results and you have been contacted on this, being a prospective full-fledged computer
programmer.

Your analysis of the system shows that the following information is needed from the examination results data:

Total number of students that participated in an entrance examination test;
Data and number of students that are admit-able in a session;
Data and total number of students that fail the test;
Data and total number of students in the marginal mean score levels (between 48 and 49 inclusive) for possible
consideration in the second batch; and
Data and total number of students in the following mean score categories:

Middle-East J. Sci. Res., 21 (12): 2231-2237, 2014

2237

A.0 - 20
B.21 - 40
C.41 - 49
D.50 - 80

Task:

Create a file named “data.dat” in the folder of your java file. The structure of the records in the fiel table should
follow the following sample

S/N Exam No. Name Gender C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
1 14/01 Akinola S. O. M 54 46 25 39 49 72 73 81 24 28
2 14/02 Dennis Kay M 78 29 11 50 58 59 29 98 27 38
3 14/03 Mohammed Ayisat F 48 30 48 49 28 38 49 21 87 67

 …. …. … ….

Populate the file with about 10 records or more.

Implement a java program to read the data from the file and computes all the information needed by the school,
using arrays, files and OOP concepts.
Your outputs, with appropriate sectional information headings, should be directed to an output file to be named
“out.txt” and newly created by the program.

