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Application of Optimal Homotopy Asymptotic Method to
Magnetohydrodynamic Flow over a Nonlinear Stretching Sheet
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Abstract: In this paper, Magnetohydrodynamic (MHD) boundary layer is studied by using Optimal Homotopy
Asymptotic Method (OHAM) and the solution of the governing Nonlinear Differential Equation is obtained
by OHAM. This method is more efficient and flexible than the other methods such as the Homotopy
Perturbation Method, Adomian Decomposition Method.
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INTRODUCTION algorithm with Newton iteration. Now we investigate to

Plasma is a hot,  ionized  gas  containing  electrons stretching. The solution of the nonlinear problem is
and ions. The major  use  of  MHD  is  in  plasma  Physics. obtained by using Optimal Homotopy Asymptotic
The boundary layer flow of an incompressible viscous Method (OHAM).
fluid over a continuously stretching sheet is often studied
and encountered in many engineering techniques Basic Idea of Oham: To explain the basic technique of the
including aerodynamic extrusion of plastic sheets, hot method, we consider the following Differential Equation:
rolling and glass -fiber production et al. [1-3].

The first work in this area was done by Sakiadis et al.
[4, 5]. After that, various aspects of the stretching flow (2.1)
Problem were discussed by different investigators.
Amongst these Chiam et al. [6] analysed the MHD flow of where L is a Linear Operator, z is independent variable,
a viscous fluid bounded by stretching surface with power F(z) is an unknown function, g(z) is a known function,
law velocity. He found the numerical solution of the N(F(z)) is a nonlinear operator and B is a boundary
boundary  value   problem   by    using    the  Runge-Kutta operator.

analyze the MHD flow caused by a sheet with nonlinear

According to technique, OHAM we construct a homotopy as,  which satisfies

(2.2)

where z R, p  [0,1] is an embedding parameter, H(p) is a nonzero auxiliary function for p  0, H(0) = 0 and (z, p) is an
unknown function. Obviously, when p = 0 and p = 1, it holds that (z, 0) = F (z) and (z, 1) = F(z)  respectively. Thus0

as p varies from 0 to 1, the solution (z, p) approaches from F (z)  to F(z) where F (z) is obtained from equation (2.2), for0 0

p = 0 and we have
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(2.3)

Next we choose auxiliary function H(p) in the form

(2.4)

where C , C  . . . are constants to be determined latter. H(p) can be expressed in many forms as investigated by Marinca1 2

et al. [7, 8]. To get an approximate solution one can expand (z, p, C ) in Taylor’s series about p in the following pattern:i

(2.5)

Making use of equation (2.5) in equation (2.2) and comparing the coefficients of like powers of p, we get the
following linear equations:  zeroth order problem is given by equation (2.3) and the first and second order problems
are given by equations (2.6) and (2.7) respectively.

(2.6)

(2.7)

The general governing equations for F (z) are given ask

(2.8)

where  is the coefficient of p  in the expansion of N( (z, p)) about the embedding parameter pm

(2.9)

It has been observed that the convergence of the series (2.5) depends upon the auxiliary constants C C , . . .1 2

If it is convergent at p = 1 one has

(2.10)

The result of the mth order approximations are given as

(2.11)

Making use of equation (2.11) into equation (2.1) it results the following Residual

(2.12)
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If r = 0 then  be the exact solution. Generally it does not happen especially in nonlinear problems. In order to get
the optimal values of C ' s where i=1, 2, 3, … We first construct the functionali

(2.13)

And then minimizing it we have

(2.14)

where a, b are lying in the domain of the concerned problem. Making use of the Least Square Method we get the OHAM
solution.

Mathematical Formulation of the Problem: For second grade Incompressible Homogeneous fluid, The Cauchy stress
tensor has the form

(3.1)

where

(3.2)

(3.3)

where V denotes the velocity V= gradient operator,  denotes material  time  differentiation  and  in  equation  (3.1).

The Spherical stress –pI is due to the constraint of incompressibility, µ is the viscosity ,  are normal stress moduli1 2

and A , A  are the first two Rivlin-Ericksen Tensors. After prolonged discussion the sign of  in equation (3.1) in critical1 2 1

review of Dunn and Rajagopal et al. [9]. It is concluded that equation (3.1) explains the basic model of the fluid
completely. If the fluid modeled by equation (3.1) is in accord with thermodynamics in the sense that all motions of the
fluid meet the Clausius-Duhem inequality and the supposition that the definite Helmholtz free energy of the fluid is a
minimum when the fluid is locally at rest, then

(3.4)

We consider the second grade flow satisfying from equations (3.1) to (3.4) past a flat sheet coinciding with the plane
y = 0. The flow is confined to y > 0. Two equal and opposite forces are applied along x-axis so that the wall is stretched
keeping the origin fixed and a uniform magnetic field, B is applied along y-axis. The steady two dimensional boundary
layer equations are:

(3.5)

(3.6)
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where  is the kinematic viscosity u, v are the velocity components in the x and y directions  is the fluid density.

 is the electrical conductivity of the fluid. B the uniform magnetic field along the y-axis and , neglecting the

induced magnetic field and using equations (3.1) to (3.4) we get from equations (3.5), (3.6) that

(3.7)

(3.8)

In equation (3.8) the external electric field and the polarization outcomes are negligible et al. [6]

(3.9)

The boundary conditions concerned the nonlinear stretching sheets are as

(3.10)

Using the following substitutions

(3.11)

The resulting nonlinear differential equation is given as

(3.12)

with boundary conditions

(3.13)

where

(3.14)

Oham for the Proposed Problem: We find solutions of equations (3.12) and (3.13) Making use of the method OHAM
described in section 2, we write equation (3.12) in the form

(4.1)

(4.2)

For simplicity and justification of the problem letting  = 1, M = 1 and for large value b such that equations (4.1) and
(4.2) can be written as

(4.3)

(4.4)
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Letting b = 3, the reason for b = 3 will be cleared latter on after displaying the graph.
The exact solution is given as

(4.5)

Now applying the technique described in section 2 we have zeroth order problem which is given as

(4.6)

Its solution is given as

(4.7)

First order problem is given as

(4.8)

Its solution is given as

(4.9)

Second order problem is given as

(4.10)
Its solution is given as

(4.11)

Third order problem is given as

(4.12)

Its solution is given as,

(4.13)
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We extend the case to 10  order problem that is  and the solution to F (z, C ) using equations (4.7), (4.9),th
10 1

(4.11), (4.13),…., we get 10  order approximate solution by OHAM for p = 1 is th

(4.14)

Following the technique stated in section 2 and using the domain a = 0, b = 3 we have the residual

(4.15)

It is minimized for a = 0 and b = 3 we obtained C  = –0.224963746, 10  order approximate solution is1
th

(4.16)

Fig. 1: Graph of exact solution and OHAM solution Engineering series. Reinhold, New York, Van

Table 1: Displays values of exact solution (4.5) OHAM solution (4.16) and
error.

z Exact solution OHAM solution error
0 0 0 0
0.3 0.244481 0.244991 -5.0924 E-7
0.6 0.404434 0.405021 -5.87281 E-8
0.9 0.509083 0.508468 6.14847 E-8
1.2 0.577549 0.574594 2.95476 E-7
1.5 0.622344 0.616686 5.95808 E-7
1.8 0.65165 0.642463 9.18732 E-7
2.1 0.670824 0.658416 1.2407 E-5
2.4 0.683369 0.667751 1.5618 E-5
2.7 0.691576 0.672556 1.90198 E-6
3.0 0.696946 0.674004 2.29421 E-6

From the Table 1 we conclude that the exact and the
OHAM solutions are converging up to the value z = 3 that
is, there is a little difference between them. The two
Graphs coincide up to z = 3 and after z = 3 the two Graphs
are diverging that is why we have taken  b  =  3.  From  the

Figure 1, we conclude that the exact and OHAM solutions
are coincident, this means that the method OHAM is
effective and reliable.
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