
Middle-East Journal of Scientific Research 20 (11): 1644-1650, 2014
ISSN 1990-9233
© IDOSI Publications, 2014
DOI: 10.5829/idosi.mejsr.2014.20.11.1948

Corresponding Author: K.P. Kaliyamurthie, Departmnet of CSE, Bharath University, Chennai-600 073, India.

1644

Android Devices Integrate with the User Interface

K.P. Kaliyamurthie and D. Parameswari1 2

Departmnet of CSE, Bharath University, Chennai-600 073, India1

Department of Computer Applications,2

Jerusalem College of Engg., Chennai-600 100, India

Abstract: This paper proposes an approach to developing guidelines for creating a mobile phone user interface
(UI), specific to Android devices. The approach is based upon four basic components of an Android UI, namely
Icons, Widgets, Activities and Menu. This paper is targeted towards providing an enhanced experience for the
users of Android devices, by developing style guidelines specific to Android devices. These guidelines help
the designer to develop a UI which is easy to use as well as visually appealing to the user.

Key words: Component % Icon % Widget % Activity % Intent % Menu % Context % Task

INTRODUCTION interface, such as touch gestures, etc. This creates an

Android, being an open-source platform provides of the current day. Android devices, becoming a popular
manufacturers, the ability to customize the user interface technology recently, requires a standard set of style
of their particular devices. Though this helps the guides for itself, to support the components and layouts
manufacturers to stylize and customize their interfaces in that this platform provides to the designers [3].
a unique way, it creates lot of inconsistencies among the UI Guidelines are not definite rules that should be
devices with the same version of the Android operating followed, but are mere suggestions that help the designer
System. Due to this, the Look and Feel of each device is to optimize the layout and provide a user friendly
different and hence the users face difficulty due to the environment to the device. Since this paper emphasizes
lack of consistency of interface styles [1]. on Android devices, the style guidelines specified in this

It is generally a time consuming process for the users paper would be specific to the same. The user interface of
of a mobile phone to get used to the user interface and Android devices contains four major components which
navigate through the device. With changing layouts and are the target area for user interactivity. Guidelines for
designs for devices with even the same version of designing each component shall be discussed
operating system yet different manufacturers, it creates a individually in detail [4].
necessity for users to learn the user interface of each and
every device individually due to lack of a standard layout Guidelines for Icon Design: An icon is a graphic symbol
for developing the user interface [2]. that represents either an action that the user can perform

Interface style guideline is a document that assists a or a link to navigate to another part of the application [5].
designer by providing him with optimization There are various types of icons available in the Android
techniques on how to provide the user with a rich layout, platform, such as launchers, menu, actionbar, statusbar,
thereby giving the user an enhanced usage experience. tabs, dialogs and listview.
Even though there are various sets of guidelines available Android operating system is meant to be used on a
for developing mobile phone UIs, with the newly variety of devices that offer a range of screen sizes and
emerging technologies there are a lot of new components resolutions. While designing icons for an application, it's
and actions that the user is allowed to perform in an important to keep in mind that the application may be

urge to improve the existing guidelines to suit the trends

Middle-East J. Sci. Res., 20 (11): 1644-1650, 2014

1645

installed on any of the devices. Android platform enables manually to appear crisp at higher densities. For
the designer to provide icons in such a way that they will
be displayed properly on any device, regardless of the
device's screen size or resolution. In general, the
recommended approach is to create a separate set of
icons for each generalized screen density. Then, store
them in density-specific resource directories in the
application. When the application runs, the Android
platform checks the characteristics of the device screen
and loads the icons from the appropriate density-specific
resource folder. Apart from supporting various display
sizes and resolutions, here are a set of guidelines that aid
in designing an icon for an application [6].

Use Common Naming Conventions for Icon Assets:
The naming of icon files should be done in such a way
that related assets will group together inside the directory
when they are sorted alphabetically. In particular, it is
helpful to use a common prefix for each icon type.

Asset Prefix Example

Icons ic_ ic_star.png
Launcher ic_launcher ic_launcher_calendar.
icons png
Menu ic_menu ic_menu_archive.png
icons

Use Vector Shapes Where Possible: It is possible to
create icons as a combination of vector shapes and
raster layers and effects with the use of image
designing programs. But it is recommended to use
vector shapes wherever possible, so that if the need
arises, assets can be scaled up without loss of detail and
edge crispness.

Using vectors also makes it easy to align edges
and corners to pixel boundaries at smaller resolutions.

Design with Large Canvases: Since there is a need to
create assets for different screen densities, it is best to
start your icon designs on large canvases with
dimensions that are multiples of the target icon sizes [6].
For example, launcher icons are 96, 72, 48, or 36 pixels
wide, depending on screen density. If you initially draw
launcher icons on an 864x864 canvas, it will be easier and
better to tweak the icons when you scale the canvas
down to the target sizes for final asset creation.

Redraw Bitmap Layers During Scaling: If an image is
scaled up from a bitmap layer, rather than from a
vector layer, those layers will need to be redrawn

example if a 60x60 circle was painted as a bitmap
for mdpi it will need to be repainted as a 90x90 circle for
hdpi.

Remove Unnecessary Metadata While Saving Image
Assets: Although the Android SDK tools will
automatically compress PNGs when packaging application
resources into the application binary, a good practice is to
remove unnecessary headers and metadata from the
assets. There are various tools such as OptiPNG that can
ensure that this metadata is removed and that your image
asset file sizes are optimized.F. Make sure that
corresponding assets for different densities use the same
filenames

Corresponding icon asset files for each density must
use the same filename, but be stored in density-specific
resource directories. This allows the system to look up
and load the proper resource according to the screen
characteristics of the device. For this reason, make sure
that the set of assets in each directory is consistent and
that the files do not use density-specific suffixes [7].

Guidelines for Widget Design: App widgets (sometimes
just "widgets") are a feature introduced in Android 1.5
and vastly improved in Android 3.0 and 3.1. A widget can
display an application's most timely or otherwise
relevant information at a glance, on a user's Home screen.
The standard Android system image includes several
widgets, including a widget for the Analog Clock, Music
and other applications[7]. This paper describes how to
design a widget so that it fits graphically with other
widgets and with the other elements of the Android Home
screen such as launcher icons and shortcuts. It also
describes some standards for widget artwork.

Standard Widget Anatomy: Typical Android app widgets
have three main components: A bounding box, a frame
and the widget's graphical controls and other elements.
App widgets can contain a subset of the View widgets in
Android; supported controls include text labels, buttons
and images. For a full list of available Views, see the
Creating the App Widget Layout section in the
Developer's Guide. Well-designed widgets leave some
margins between the edges of the bounding box and the
frame and padding between the inner edges of the frame
and the widget's controls.

The table below provides a rough estimate of your
widget's minimum dimensions, given the desired number
of occupied grid cells:

Middle-East J. Sci. Res., 20 (11): 1644-1650, 2014

1646

Fig. 2.1: Widgets generally have margins between the
bounding box and frame and padding between
the frame and widget controls.backgrounds and
flexible layouts for app widgets will allow your
widget to gracefully adapt to the device's Home
screen grid and remain usable and aesthetically
awesome.

No. of Cells Available Size (dp)
(Columns or Rows) (minWidth or minHeight)

1 40dp
2 110dp
… …
n 70 × n – 30

Determining a Size for Your Widget: Each widget must
define a minWidth and minHeight, indicating the minimum
amount of space it should consume by default[8]. When
users add a widget to their Home screen, it will generally
occupy more than the minimum width and height you
specify. Android Home screens offer users a grid of
available spaces into which they can place widgets and
icons. This grid can vary by device; for example, many
handsets offer a 4x4 grid and tablets can offer a larger, 8x7
grid. When your widget is added, it will be stretched to
occupy the minimum number of cells, horizontally and
vertically, required to satisfy its minWidth and minHeight
constraints. As we discuss in Designing Widget Layouts
and Background Graphics below, using nine-patch

Resizable Widgets: Widgets can be resized horizontally
and/or vertically as of Android 3.1, meaning that
minWidth and minHeight effectively become the default
size for the widget. You can specify the minimum widget
size using minResizeWidth and minResizeHeight; these
values should specify the size below which the widget
would be illegible or otherwise unusable. This is generally
a preferred feature for collection widgets such as those
based on ListView or GridView.

Adding Margins to Your App Widget: Android 4.0 will
automatically add small, standard margins to each edge of
widgets on the Home screen, for applications that specify
a target SDK Version of 14 or greater. This helps to
visually balance the Home screen and thus we recommend
that you do not add any extra margins outside of your app
widget's background shape in Android 4.0.

Designing Widget Layouts and Background
Graphics: Most widgets will have a solid background
rectangle or rounded rectangle shape. It is a best practice
to define this shape using nine patches; one for each
screen density. Nine-patches can be created with a
graphics editing program. This will allow the widget
background shape to take up the entire available space
[9]. The nine-patch should be edge-to-edge with no
transparent pixels providing extra margins, saves for
perhaps a few border pixels for subtle drop shadows or
other subtle effects.

Guidelines for Designing Activities and Tasks:
This section of the paper highlights the design decisions
that are available to you while preparing activities for an
application and the control they give you over the UI
experience of your application.

Four fundamental concepts in the Android system
that are to be understood to provide a good
understanding of the flow of the application are
Applications, Activities, Activity Stack and Intents.

The following are tips and guidelines for application
designers and developers:A. Use explicit intents when
writing an activity that will not be reused and do not
specify intent filters.

If you're writing an activity that you don't want other
activities to use, be sure not to add any intent filters to
that activity. This applies to an activity that will be
launched only from the application launcher or from other
activities inside your application. Instead, just create
intents specifying the explicit component to launch —
that is, explicit intents. In this case, there's just no need
for intent filters. Intent filters are published to all other
applications, so if you make an intent filter, what you're
doing is publishing access to your activity, which means
you can cause unintentional security holes.

When Reusing an Activity, Handle the Case Where No
Activity Matches: Applications can re-use activities made
available from other applications. In doing so, you cannot
presume your intent will always be resolved to a matching
external activity — you must handle the case where no
application installed on the device can handle the intent.

Middle-East J. Sci. Res., 20 (11): 1644-1650, 2014

1647

A test can be made to check if the activity matches You must take care when implementing these so that the
the intent, which you can do before starting the activity, user has a consistent experience with the back button, not
or catch an exception if starting the activity fails. To test causing surprises in where they return to or the state the
whether an intent can be resolved, your code can query application ends up in.
the package manager. The isIntentAvailable() helper The Handling Notifications section of the developer
method can be used to test when initializing the user guide's Status Bar Notifications documentation provides
interface. For instance, you could disable the user control an overview of how to write code to correctly handle
that initiates the Intent object, or display a message to the notification. This applies equally to handling interactions
user that lets them go to a location, such as Google Play, with app widgets [4].
to download its application. In this way, your code can A notification always starts an activity as a new task
start the activity (using either startActivity() or (that is, it puts FLAG_ACTIVITY_NEW_TASK in the
startActivityForResult()) only if the intent has tested to intent it passes to startActivity ()). This is done because
resolve to an activity that is actually present interruptions to a task should not become part of that

Consider How You Want Your Activities to Be Launched
or Used by Other Applications: As a designer or Do Not Use Dialog Boxes in Place of Notifications:
developer, it's up to you to determine how users start If your background service needs to notify a user,
your application and the activities in it. As an application use the standard notification system. Do not use a dialog
is a set of activities, the user can start these activities from or toast to notify them. A dialog or toast would
Home or from another application. immediately take focus and interrupt the user, taking

C Launch your main activity from an icon at Home in the middle of typing text the moment the dialog appears
C Launch your activity from within another application and could accidentally act on the dialog. Users are used
C Start an activity expecting a result to dealing with notifications and can pull down the
C Start an activity not expecting a result notification shade at their convenience to respond to your
C Launch your activity only from within another message.

application
C Launch two or more main activities within a single Do Not Take over the Back Button Unless You

application from separate icon at Home Absolutely Need to: As a user navigates from one
C Making your application available as a widget activity to the next, the system adds them to the activity

An application can also display a portion of itself as with the Back button. Most activities are relatively limited
an app widget, embedded in Home or another application in scope, with just one set of data, such as viewing a list
and receive periodic updates. of contacts, composing an email, or taking a photo. For

Allow Your Activities to Be Added to the Current Task: information on a map to the user: displaying the location
If your activities can be started from another application, of a search result, displaying locations of friends and
allow them to be added to the current task (or an existing displaying a line for a street path providing direction
task it has an affinity with). Having activities added to a between points. Maps store these layers in its own
task enables the user to switch between a task that history so the Back button can return to a previous layer
contains your activities and other tasks. Exceptions are [2].
your activities that have only one instance. For this
behavior, your activity should have a launch mode of Guidelines for Designing Menu: A menu holds a set of
standard or singleTop rather than single Task or commands (user actions) that are normally hidden and are
singleInstance. These modes also enable multiple accessible by a button, key, or gesture. Menu commands
instances of your activity to be run. provide a means for performing operations and for

Notifications and App Widgets Should Provide applications. Menus are useful for freeing screen space,
Consistent Back Behavior: Notifications and app widgets as an alternative to placing functionality and navigation,
are two common ways that a user can launch your app in buttons or other user controls in the content area of
through something besides its main icon in Launcher. your application.

task.

focus away from what they were doing: the user could be

stack. This forms a navigation history that is accessible

example, Maps uses layers to present different

navigating to other parts of your application or other

Middle-East J. Sci. Res., 20 (11): 1644-1650, 2014

1648

Fig. 5.1: Global actions Vs. Context actions when a user performs a touch & hold on a person's name

The Android system provides two types of menus would typically contain commands "View contact", "Call
you can use to provide functionality or navigation. contact" and "Edit contact".
Between them, you should be able to organize the
functionality and navigation for your application. Briefly: Place the Most Frequently Used Operations First:

C The Options menu contains primary functionality scrollable, so it's important to place the most
that applies globally to the current activity or starts important commands so they can be viewed without
a related activity. It is typically invoked by a user scrolling. In the case of the Options menu, place the most
pressing a hard button, often labeled Menu. frequently used operation on its icon menu; the user will

C The Context menu contains secondary functionality have to select "More" to see the rest. It's also useful to
for the currently selected item. It is typically invoked place similar commands in the same location — for
by a user's touch & hold on an item. Like on the example; the Search icon might always be the first icon in
Options menu, the operation can run either in the the Options menu across several activities that offer
current or another activity. search.

All but the simplest applications have menus. The should be first, followed by commands in order of
system automatically lays the menus out and provides decreasing use, with the least used command at the
standard ways for users to access them. In this sense, bottom.
they are familiar and dependable ways for users to access
functionality across all applications. All menus are panels Don't Put Commands Only in a Context Menu: If a user
that "float" on top of the activity screen and are smaller can fully access your application without using Context
than full screen, so that the application is still visible menus, then it's designed properly! In general, if part of
around its edges. This is a visual reminder that a menu is your application is inaccessible without using Context
an intermediary operation that disappears once it's used. menus, then you need to duplicate those commands

Selecting the right kind of menu to present and using elsewhere.
menus consistently, are critical factors in good application Before opening a Context menu, it has no visual
design. The following guidelines should assist user representation that identifies its presence (whereas the
experience designers and application developers toward Options menu has the Menu button) and so is not
this end. particularly discoverable. Therefore, in general, a Context

Separate Selection-specific Commands from Global corresponding activity screen. For example, while it's
Commands: Put any commands that are global to the useful to let the user call a phone number from a Context
current activity in the Options menu or place them fixed in menu invoked by touch & hold on a name in a list of
an activity screen; put commands that apply to the contacts, that operation should also be available by the
current selection in the Context menu. (In any case, the user touching the phone number itself when viewing
command could either run as part of this activity or start contact details.
another activity.) You can determine in which menu to
place a command by what it operates on: If the command The First Command in a Context Menu Should Be the
acts on selected content (or a particular location) on the Selection's Most Intuitive Command: Touching on an
screen, put the command in the Context menu for that item in the content should activate the same command as
content. If the command acts on no specific content or touching the first item in the Context menu. Both cases
location, put it in the Options menu. This separation of should be the most intuitive operation for that item.

commands is enforced by the system in the following
way. When you press the Menu button to display the
Options menu, the selected content becomes unselected
and so cannot be operated on. For an explanation of why
the content becomes unselected, see the article on Touch
mode.

An example of a selection-specific Context menu is

in a list view of a contacts application. The Context menu

Because of limited screen height, some menus may be

In a Context menu, the most intuitive command

menu should duplicate commands found in the

Middle-East J. Sci. Res., 20 (11): 1644-1650, 2014

1649

Selecting an Item in the Content Should Perform the A Dialog Should Not Have an Options Menu: When a
Most Intuitive Operation: In your application, when the dialog is displayed, pressing the Menu button
user touches any actionable text (such as a link or list should do nothing. This also holds true for
item) or image (such as a photo icon), execute the activities that look like dialogs. A dialog box is
operation most likely to be desired by the user. Some recognizable by being smaller than full-screen,
examples of primary operations: having zero to three buttons, is non-scrollable and

C Selecting an image executes "View image" checkboxes or radio buttons. The rationale behind not
C Selecting a media icon or filename executes "Play" having a menu is that when a dialog is displayed, the user

A Context Menu Should Identify the Selected Item: When to start a new global task (which is what the Option menu
a user does touch & hold on an item, the Context menu provides).
should contain the name of the selected item. Therefore,
when creating a Context menu, be sure to include a title If an Activity Has No Options Menu, Do Not Display a
and the name of the selected item so that it's clear to the Message: When the user presses the Menu button, if
user what the context is. For example, if a user selects a there is no Options menu, the system currently does
contact "Joan of Arc", put that name in the title of the nothing. We recommend you do not perform any action
Context menu (using set Header Title). Likewise, a (such as displaying a message). It's a better user
command to edit the contact should be called "Edit experience for this behavior to be consistent across
contact", not just "Edit". applications.

Put Only the Most Important Commands Fixed on the CONCLUSION
Screen: By putting commands in menus, you free up the
screen to hold more content. On the other hand, fixing In this paper, we suggested various design tips
commands in the content area of an activity makes them for developing UI for applications of an Android
more prominent and easy to use. device. Factors critical to UI designs were identified

Here are a number of important reasons to place These factors were combined to develop specific
commands fixed on the activity screen: Guidelines for each UI component. The style guide
C To give a command the highest prominence, considers various topics, including menus, UI

ensuring the command is obvious and won't be components that are specific to Android platform and
overlooked. For example, A "Buy" button in a store thus, this paper serves as a Standard for developing UIs
application. for Android applications.

C When quick access to the command is important and
going to the menu would be tedious or slow. For REFERENCES
example, Next/Previous buttons or Zoom In/Out
buttons in an image viewing application. 1. Goyal, D., P.H.J. Chong, P. Shum, Y.C. Tong, X.Y.

C When in the middle of an operation that needs to be Wang, Y.X. Zuo and H.W. Kuek, XXXX. Design &
completed [8]. Implementation Of User Interface For Mobile

Use Short Names in the Options Icon Menu: If a text label 2. Design Patterns For User Interface For Mobile
in the Options icon menu is too long, the system Applications Erik G. Nilsson.
truncates it in the middle. Thus, "Create Notification" is 3. A Factor Combination Approach To Developing
truncated to something like Style Guides For Mobile Phone User Interface

"Create…ication". You have no control over this Park, Jaemin Chun
truncation, so the best bet is to keep the text short. In 4. Http://Www.Mobile.Tutsplus.Com/
some versions of Android when the icon is highlighted by 5. Kaliyamurthie, K.P., 2013. An Application Of Non-
a navigation key such as a trackball, the entire descriptive Uniform Cellular Automata For Efficient
text may be shown as a marquee where the words are Cryptography, Indian Journal Of Science And
readable as they scroll by [9]. Technology, 6(5): 4648-4652.

possibly a list of selectable items that can include

is in the middle of a procedure and should not be allowed

as general usability principles and UI components.

Devices.

Wonkyu Park, Sung H. Han, Sungjin Kang, Yong S.

Middle-East J. Sci. Res., 20 (11): 1644-1650, 2014

1650

6. Kaliyamurthie, K.P., 2013. K-Anonymity Based 8. Kumaravel, A., 2013. Vehnode: Wireless Sensor
Privacy Preserving For Data Collection In Wireless Network Platform For Automobile Pollution Control”
Sensor Networks, Indian Journal Of Science And Ieee Explore, pp: 963-966.
Technology, 6(5): 4604-4614. 9. Kumaravel, A., 2013. Multi- Classification Approach

7. Kaliyamurthie, K.P., 2013. Highly Secured Online For Detecting Network” Ieee Explore, pp: 1114-1117.
Voting System Over Network, Indian Journal Of
Science And Technology, 6(6): 4831-4836.

