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Abstract: The Integer Cosine Transform (ICT) presents a performance close to Discrefe Cosine Transform
(DCT) with areduced computational complexity. The ICT kernel isinteger-based, so computation only requires
adding and shifting operations. This paper presents a parallel-pipelined architecture of an 1-D 1CT(10,9,6,2,3,1)
processor for mage encoding. The main characteristics of 1-D ICT architecture are high throughput, parallel
processing, reduced internal storage and 100 % efficiency in computational elements. The arithmetic units are
distributed and are made up of adders/subtractors operating at half the frequency of the input datarate. In this
transform, the truncation and rounding errors are only introduced at the final normalization stage. The
performance of the processor has been compared with various multiplier algorithms for the existing pipe-lined

architecture.
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INTRODUCTION

The Discrete Cosine Transform (DCT) is widely
considered to provide the best performance for
transform coding and image compression [1]. The DCT,
which is known to be the closest to the idea energy
compaction transform, has become an international
standard for sequential codecs as JPEG, MPEG,
H.261, H.263, etc. VLSI implementation of DCT using
floating-point arithmetic is highly complex and requires
multiplications[2, 3]. The Integer Cosine Transform (ICT)
[4] is generally applying the concept of dyadic symmetry
and presents a similar performance and compatibility
with the DCT using either a programmable processor or
dedicated hardware.

The ICT basis components are integers they do not
require floating-point multiplications, as these are
substituted by fixed-point addition and shifting
operations, as they have more efficient hardware
implementation.

Decomposition of the | CT: ThelCT was derived from DCT
by the concept of dyadic symmetry. Let T be the matrix
that represents the order-N DCT. The mnth element of this
matrix is defined as
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where K is the normalization diagona matrix and J an
orthogonal matrix made up of the basis components of
DCT. isdefined as
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a b, c d e fandg beng constants; g is 1. The
dyadic symmetry present in reveals that to ensure their
orthogonality, the constants a, b, ¢ and d must satisfy the
following only condition
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ab=ac+bd+cd (5)

Furthermore, if J must be similar to DCT, it implies
that

abcdand ef (6)

Those T matrices that satisfy (5) and (6) also have a,
b, ¢, d, e and f constants, which are integers, are
caled integer cosine transform and are denoted as
ICT(a b, c, d,ef).

The 1-D ICT for areal input sequence x(n) is defined
as

X =Tx=KX=KY ©)

where X and x are dimension-8 column matricesand K is
the diagonal normalization matrix. Reordering the input
sequence and the transform coefficients according to the
rules

X' (n) = x(n)

X (7-n)=x(n+4)n[0, 3] (8
X'(m) = X(Br8[m])

X' (m+4)=X(2m+1) m|O, 3] (9)

where Br8 [m] represents bit-reverse operation of length8,
then the 1-D ICT can be expressed as

X' = TeX' = KedoX! = KoY’ (10)

The reordered basis components of ICT can be
expressed as

g, =8 Odey Lgu
R7E0 Jpda -Lad (12)

1, being the dimension- 4 identity matrix and
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Applying the decomposition rules defined in (8) and
(9) to the J,, matrix resultsin

\]4e=é(§\]2e 08(?2 |2@R4
&0 Jobds -laf (13)

where R, is the reordering matrix of length 4, |, is the
dimension-2 identity matrix and
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Fig. 1: Signal flow graph of 1-D ICT
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In this case, the matrices J,. and J,, are defined as
1 1 1 1
1 -1 —1 1
Jie = [:3 1 —1 —:5] (15)
1 -3 3 -1
0 9 6 2
9 —2 —10 —6
Jao = [ 6 —-10 2 9 ] (16)
2 —6 9 —10

1-d Ict Parallel Pipeline Architecture

Signal Flow Graph: Fig:1 shows the signal flow graph
obtained by applying the decomposition process to
ICT(10, 9,6, 2, 3, 1).

As can be seen in Fig:1, the first computing level
operates on the input data, reordering them according to
rule (8); additions and subtractions of data pairs formed
with sequences x'(n) and x'(n+4) (n= 0, 1, 2, 3) are
executed. In the second computing level the
transformations J,. and J,,, are obtained, their nuclei being
the matrices defined by (15). The transformation J,. is
applied to the first half of the intermediate data sequence,
& to &, giving as aresult the even coefficients (Yo, Y,, Y4,
Y ) of the ICT, without normalization. Similarly, J,, is
applied to the other half of the middle data sequence, a7
to a4, giving as aresult the odd coefficients (Y, Y3, Ys, Y5)
of the ICT, aso without normalization. In the third
computing level, the coefficients Y, are normalized by k;
and the transform sequence of the coefficients X(m)
appears reordered according to rule (9).

Applying the decomposition procedure of J,
established in (10) and (11), we get
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Fig. 3: Signal flow graph of J,, processor
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Fig. 4: Architecture of 1-D ICT processor
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b,, by, b, and b, being the intermediate data of the
computation of transformation. J,, operating on (17), we
get:

N o Y .

Fig:2 showsthe signal flow graph obtained from (17)
and (18).

As can be seen in (17), the computation of the even
coefficients of the ICT can be performed with additions
and subtractions, as multiplication by 3 can be easily
implemented by means of add and shift operations. The
computation of the odd coefficients of the ICT can aso be
simplified; decomposition of the J,, matrix as the addition
of matrices having elements that are powers of 2, gives:

Y, 2fa 0 8 8 0]a =< 1 0 0]
Y,|_ 2|la, 8 0 0 -8fa, 1 0 8 0fa,
Y. || 2fla .t 8 0o 0 8la. [0 8 0 1
Y -2/la,l 0 -8 8 0 I—“l (U] 1 8]

In this form, the odd coefficients of the ICT can be
implemented simply in terms of add and shift operations.
Fig: 3 showsthe signal flow graph, obtained from (19) for
the transformation J,,, having three computing levels, d,
f,eandg (i =0, 1, 2, 3) being the intermediate data.
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Architechture of 1-d Ict Processor: The 1-D ICT
multiplication-free processor architecture, whose scheme
is shown in Fig: 4, has been designed to implement the
computing diagram of Fig:1 with the highest degree of
efficiency. It has an input processor computing the
intermediate data of the first computing level, , to a,, two
processors in parallel, computing the transformations J,,
and J,, and an output mixer generating the coefficients
sequence of the ICT, ordered in natural form. The three
processors have paralel architecture, alowing the
operation frequency to be reduced to f/2, where f, is the
input data sampling frequency. The output mixer gives
the coefficients sequence of the ICT at the frequency f..
The control of the processor is very simple and is carried
out using four signas: Clk1, external clock at frequency f
Clk2, interna clock at frequency ; and the multiplexer
selection signals Sl at frequency /2 and S2 at frequency
f4/8. The arithmetic multiplications have been separated
into x 2, x 3, x 8 terms so that the arithmetic units are
reduced to adders and to substractors combined with
wired-shift operations [5-7].

Input Processor: The input processor has a shift register
which stores the input data sampled at frequency f,, two
multiplexers 4:1, an adder and a subtractor. The adder and
the subtractor both have pipeline structure and operate in
paralle at frequency f. /2, generating the input sequences,
(30, &, &, &) and (&, &, &, &), of processors J,. and J,,
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Fig. 6: Architecture of J,. processor

from the data stored in the register. In this way an
efficiency of 100% is attained for the arithmetic elements

[8-11].

J,e Processor: The processor J ,has been conceived to
calculate the even coefficients of the ICT using the
procedure established in (13), (14) and its signal flow
graph shown in Fig: 2. The adder and the subtractor,
which operate in parallel at frequency f, /2, generate first
the intermediate data (b,, b,, b,, by) from the input
sequence (ay, &, &, &), stored in the register SRA1; b,

Output Waveforms:

andb, are stored in register SRB1, while b, and
b, ae stored in SRB2. The multiplier by 3
implemented by adding and shifting, generates the
data 3b2 and 3b3, which are stored in register SRB3.
After that, the even coefficients of the ICT are
generated from the data stored in SRB1, SRB2 and
SRB3: Y, and Y, in the adder AE3, Y, and Y, in the
subtracter AE4. The output mixer orders the even
coefficient sequence of the ICT (Y,, Y, Y., Y. In this
processor, the adder and the subtractor have an
efficiency of 100%.
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Output of J,, Processor
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Output of 1-d I ct Processor
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M odification: The performance of the processor has been
verified with various algorithms for the existing pipe-lined
architecture. Multiplier architectures can be classified as
either array topologies or tree topologies [6]. The pipe-
lined adder/subtractor algorithm is effective for both
array and tree multipliers. The proposed algorithm can
be applied to many digital systems practically, where
minimizing power consumption is important. There is a
substantial reduction in the number of logic transitions
and a corresponding power savings with a small increase
inarea

CONCLUSION

This paper presents a parallel-pipelined architecture
of an 1-D I1CT(10,9,6,2,3,1) processor for mage encoding.
Two 1-D ICT processors can be pipe-lined to make a 2-D
ICT architecture. The paralel-pipeline architecture
proposed alows a higher operating speed and the
pipelined adders/subtractors have 100% efficiency
operating at half the frequency of the input datarate. The
performance is evaluated based on different algorithm for
the same architecture and results are discussed. Other
characteristics of this architecture are high throughput,
parallel processing and reduced internal storage. The
authors think the ICT will be used in increasingly many
applicationsin the future.
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